DOI QR코드

DOI QR Code

Evaluation of SO2 Absorption Efficiency for Calcined Oyster Shell Slurry Using a Simulated Spray Type-flue Gas Desulfurization (FGD) System: A Comparative Study with Limestone Slurry

모사 Spray Type 배연탈황설비를 이용한 소성패각 슬러리의 SO2 흡수능 평가: 석회석과의 비교연구

  • Kim, Seok-Hwi (Center for Plant Engineering, Institute for Advanced Engineering) ;
  • Hong, Bum-Uh (Center for Plant Engineering, Institute for Advanced Engineering) ;
  • Lee, Jin-Won (Department of Environmental Engineering, Kunsan National University) ;
  • Cha, Wang-Seok (Department of Environmental Engineering, Kunsan National University) ;
  • Kim, Kangjoo (Department of Environmental Engineering, Kunsan National University) ;
  • Moon, Bo-Kyung (Korea Western Power, Co., Ltd.)
  • 김석휘 (고등기술연구원 플랜트엔지니어링센터) ;
  • 홍범의 (고등기술연구원 플랜트엔지니어링센터) ;
  • 이진원 (군산대학교 환경공학과) ;
  • 차왕석 (군산대학교 환경공학과) ;
  • 김강주 (군산대학교 환경공학과) ;
  • 문보경 (한국서부발전(주))
  • Received : 2018.11.16
  • Accepted : 2019.04.04
  • Published : 2019.04.28

Abstract

About 300,000 tones of oyster shell are annually produced in Korea and, thus, a massive recycling plan is required. Many desulfurizing studies using oyster shells with chemical composition of $CaCO_3$ have been performed so far; however, most of them have focused on dry desulfurization. This study investigates the possibility of using oyster shells for wet desulfurization after calcination. For this, a simulated wet desulfurization facility of spray type was devised and compared the SOx-stripping characteristics of calcined oyster shell with those of limestone. The calcined oyster shell slurry indicate a better desulfurizability than the slurries of raw shell or limestone because the oyster shell transformed to a more reactive phase ($Ca(OH)_2$) by the calcination and hydration. Because of this reason, when the calcined oyster shell slurries were used, the reaction residue showed the higher gypsum ($CaSO_4{\cdot}2H_2O$) contents than any other cases. In the continuous desulfurization experiments, calcined oyster shell slurry showed a wider pH variation than limestone or raw oyster shell slurries, another clear indication of high reactivity of calcined oyster shells for $SO_2$ absorption. Our study also shows that the efficiency of wet desulfurization can be improved by the use of calcined oyster shells.

국내에서는 연간 약 30만 톤 내외의 굴패각이 발생되고 있어, 이를 대규모로 활용할 수 있는 적절한 방안이 요구되고 있다. $CaCO_3$가 주성분인 굴패각을 탈황재료로 사용하는 연구들이 많이 진행되어 왔으나, 지금까지는 주로 건식탈황을 대상으로 한 것이었다. 본 연구에서는 굴패각을 소성하여 습식탈황재료로 활용하는 가능성에 대하여 고찰하였다. 이를 위하여 습식배연탈황공정의 하나인 spray type 방식의 모사탈황장치를 제작하여 소성 굴패각의 탈황특성을 석회석과 비교하였다. 연구결과, 소성 굴패각은 석회석이나 소성하지 않은 굴패각에 비하여 우수한 $SO_2$ 흡수능을 보였다. 이는 굴패각이 소성 및 수화반응을 통해 상대적으로 반응성이 높은 형태($Ca(OH)_2$)로 전환되었기 때문이다. 이로 인하여 반응잔류물 중에 석고($CaSO_4{\cdot}2H_2O$)의 함량이 다른 경우에 비하여 높게 나타났다. 본 연구의 연속탈황실험에서는 소성 굴패각이 석회석에 비하여 큰 pH 변동폭을 보였으며, 석회석과 소성 굴패각을 혼합하여 수행된 탈황실험에서도 소성 굴패각의 혼합비율이 증가됨에 따라 pH변동폭이 커지는 결과를 보였다. 이러한 현상은 소성 굴패각의 $SO_2$ 흡수 반응성이 큰 것을 잘 보여주는 것이다. 본 연구결과는 소성 굴패각을 습식탈황에 이용할 경우 탈황효율을 크게 향상시킬 수 있음도 보여준다.

Keywords

JOHGB2_2019_v52n2_119_f0001.png 이미지

Fig. 1. An illustration of spray type-desulfurization device used for this study.

JOHGB2_2019_v52n2_119_f0002.png 이미지

Fig. 2. XRD analyses results of dried cakes of various materials used for this study.

JOHGB2_2019_v52n2_119_f0003.png 이미지

Fig. 3. Results of breakthrough experiments (Exp. 1) using various slurries.

JOHGB2_2019_v52n2_119_f0004.png 이미지

Fig. 4. XRD analyses results of dried cakes obtained after Exp. 1.

JOHGB2_2019_v52n2_119_f0005.png 이미지

Fig. 5. Results of continuous desulfurization experiments (Exp. 2) using limestone slurry (a, b) and calcined oyster shell slurry (c, d).

JOHGB2_2019_v52n2_119_f0006.png 이미지

Fig. 6. XRD analyses results of dried cakes obtained after Exp. 2.

JOHGB2_2019_v52n2_119_f0007.png 이미지

Fig. 7. Ranges of pH in the reaction tank, SO2 and CO2 in the emitted gas at different mixing conditions between limestone slurry and calcined oyster shell slurry (Exp. 3).

Table 1. Experimental conditions

JOHGB2_2019_v52n2_119_t0001.png 이미지

References

  1. Ahlbeck, J., Engman, T., Falten, S., Vihma, M. (1993) A method for measuring the reactivity of absorbents for wet flue gas desulfurization. Chem. Eng. Sci., v.48, p.3479-3484. https://doi.org/10.1016/0009-2509(93)85003-8
  2. An, H.S., Park, S.S., Kim, K.H., Kim, Y.H. (2007) A study on optimization of spary type flue gas desulfurization (FGD) system. J. Korean Ind. Eng. Chem., v.18, p.29-35.
  3. Baek, C.S., Seo, J.H., Ahn, J.W., Han, C., Cho, K.H. (2015) A review of desulfurization technology using limestone in circulating fluidized bed boiler type power plant. J. Korean Inst. Res. Recycle., v.24, p.3-14.
  4. Choi, j.H., Kim, S.S., Cho, S.W., Cho, J.G. (1999) $SO_2$ absorption characteristics of oyster shell for the desulfurization of flue gas from incinerator in dry process. J. Korean Soc. Environ. Eng., v.21, p.507-516.
  5. Chu, K.J., Yoo, K.S., Kim, K.T. (1997) Characteristics of gypsum crystal growth over calcium based slurry in desulfurization reactions. Material Res. Bull., v.32, p.197-204. https://doi.org/10.1016/S0025-5408(96)00181-X
  6. Diffenbach, R.A., Hilterman, M.J., Frommell, E.A., Booher, H.B., Hedges, S.W. (1991) Thermochim. Acta., v.189, p.1-24. https://doi.org/10.1016/0040-6031(91)87096-F
  7. Ha S.H., Cha M.K., Kim K., Kim S.H., Kim Y. (2017) Mineralogical and chemical characteristics of the oyster shells from Korea. J. Miner. Soc. Korea, v.30, p.149-159. https://doi.org/10.9727/jmsk.2017.30.4.149
  8. Henzel, D.S., Laseke, B.A., Smith, E.O., Swenson, D.D. (1982) Handbook for fuel gas desulfurization scrubbling with limestone. Pollution technology review, 94, Westwood, NJ, USA: Noyes Data Corporation.
  9. Jung, J.H., Yoo, K.S., Kim, H.G., Lee, H.K., Shon, B.H. (2007) Reuse of waste oyster shells as a $SO_2$/NOx removal abosrbents. J. Ind. Eng. Chem., v.13, p.512-517.
  10. Kill, S., Michelsen, L., Kim, D.J. (1998) Experimental investigation and modeling of a wet flue gas desulfurization pilot plant. Ind. Eng. Chem. Res., v.37, p.2792-2806. https://doi.org/10.1021/ie9709446
  11. Kim, E., Kim, K., Choi, S.H., Cha, W.S. (2017) A method manufacturing high-quality gypsum using shell by wet desulfurization. Patent of Korea, KR101753823B1.
  12. Kim, Y.S. (2003) A study on the $H_2S$ removal with utilization of seashell waste (I). Korean J. Environ. Heal. v.29, p.45-49.
  13. KORIS (2018) Circulation price, http://www.koris.or.kr/sub/sub1_2.asp?SEARCH_YEARS=2017&SEARCH_MONTH=02&L_CODE=55&M_CODE=33&S_CODE=J0075&MAKER_ID=
  14. Kwon, H.B., Lee, C.W., Jun, B.S., Yun, J.D., Weon, S.Y., Koopman, B. (2004) Recycling waste oyster shells for eutrophication control. Resour. Conserv. Recy., v.41, p.75-82. https://doi.org/10.1016/j.resconrec.2003.08.005
  15. Lee, G.L. and Bak, Y.C. (2000) Calcination and sulfation reactivity of oyster shell for dry, high-temperature desulfurization. J. Korean Inst. Chem. Eng., v.38, p.541-549.
  16. Lee, J.W., Choi, S.H., Kim, S.H., Cha, W.S., Kim, K., Moon, B.K. (2018) Mineralogical changes of oyster shells by calcination: a comparative study with limestone. Econ. Environ. Geol., v.51, p.485-492. https://doi.org/10.9719/EEG.2018.51.6.485
  17. Mo J.S., Wu, X.B., Cheng, C.J.m Guan, B.H., Zhao, W.R. (2007) Oxidation inhibition of sulfite in dual alkali flue gas desulfurization system. J. Environ. Sci., v.19, p.226-231. https://doi.org/10.1016/S1001-0742(07)60037-0
  18. Nam, G., Choi, Y.H., Lee, N., Ahn, J.W. (2017) Effect by alkaline flocculation of algae and phosphorous from water using a calcined waste oyster shell. Water, v.9, p.661-671. https://doi.org/10.3390/w9090661
  19. Ok, Y.S., Oh, S.E., Ahmad, M., Hyun, S., Kim, K.R., Moon, D.H., Lee, S.S., Lim, K.J., Jeon, W.T, and Yang, J.E. (2010) Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils. Environ. Earth Sci., v.61, p.1301-1308. https://doi.org/10.1007/s12665-010-0674-4
  20. Ozyuguran A., Ersoy-Mericboyu A. (2010) Flue gas desulfurization by limestone and hydrated lime slurries. In: 4th International Conference on Safety & Environment in Process Industry, v.19, p.121-125.
  21. Park, H.J. (2011) Removal characteristics of $SO_2$ in absorbents internal circulating desulfurization equipment. Master thesis, Korea University
  22. Park, Y.O., Park, H.J., Kim, Y.H. (2011) $SO_2$ Removal by Internal Circulation of de-SOx Absorbents. J. KOSAE, v.27, p.672-680. https://doi.org/10.5572/KOSAE.2011.27.6.672
  23. Sanders, J.F., Keener, T.C., Wang, J. (1995) Heated Fly Ash/Hydrated Lime Slurries for $SO_2$ Removal in Spray Dryer Absorbers. Ind. Eng. Chem. Res., v.34, p.302-307. https://doi.org/10.1021/ie00040a032
  24. Soud, H.N. (1994) FGD installations on coal-fired plants. IEACR/71. London: IEA Coal Research.
  25. Souza, S.M.A., Santos, F.B.F., Souza, A.A.U., Barrero, F.V. (2010) Limestone dissolution in flue gas desulfurization - experimental and numerical study. J. Chem. Technol. Biotechnol., v.85, p.1208-1214. https://doi.org/10.1002/jctb.2418
  26. Takeshita, M. and Soud, H. (1993) FGD performance and experience on coal-fired plants. IEACR/58. London: IEA Coal Research.
  27. Yoon, G.L. and Kim, B.T. (2006) Stabilizing capability of oyster shell binder for soft ground treatment. J. Korean Geotech. Soc. v.22, p.143-149.