DOI QR코드

DOI QR Code

Inhalation of Bacterial Cellulose Nanofibrils Triggers an Inflammatory Response and Changes Lung Tissue Morphology of Mice

  • Silva-Carvalho, Ricardo (CEB - Centre of Biological Engineering, University of Minho) ;
  • Silva, Joao P. (UCIBIO, REQUIMTE - Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto) ;
  • Ferreirinha, Pedro (ICBAS - Biomedical Sciences Institute Abel Salazar, University of Porto) ;
  • Leitao, Alexandre F. (CEB - Centre of Biological Engineering, University of Minho) ;
  • Andrade, Fabia K. (Embrapa Tropical Agroindustry) ;
  • da Costa, Rui M. Gil (LEPAE - Laboratory for Process, Environmental and Energy Engineering, Chemical Engineering Department, Faculty of Engineering, University of Porto) ;
  • Cristelo, Cecilia (CEB - Centre of Biological Engineering, University of Minho) ;
  • Rosa, Morsyleide F. (Embrapa Tropical Agroindustry) ;
  • Vilanova, Manuel (ICBAS - Biomedical Sciences Institute Abel Salazar, University of Porto) ;
  • Gama, F. Miguel (CEB - Centre of Biological Engineering, University of Minho)
  • Received : 2018.06.19
  • Accepted : 2018.10.04
  • Published : 2019.01.15

Abstract

In view of the growing industrial use of Bacterial cellulose (BC), and taking into account that it might become airborne and be inhaled after industrial processing, assessing its potential pulmonary toxic effects assumes high relevance. In this work, the murine model was used to assess the effects of exposure to respirable BC nanofibrils (nBC), obtained by disintegration of BC produced by Komagataeibacter hansenii. Murine bone marrow-derived macrophages ($BMM{\Phi}$) were treated with different doses of nBC (0.02 and 0.2 mg/mL, respectively 1 and $10{\mu}g$ of fibrils) in absence or presence of 0.2% Carboxymethyl Cellulose (nBCMC). Furthermore, mice were instilled intratracheally with nBC or nBCMC at different concentrations and at different time-points and analyzed up to 6 months after treatments. Microcrystaline $Avicel-plus^{(R)}$ CM 2159, a plant-derived cellulose, was used for comparison. Markers of cellular damage (lactate dehydrogenase release and total protein) and oxidative stress (hydrogen peroxidase, reduced glutathione, lipid peroxidation and glutathione peroxidase activity) as well presence of inflammatory cells were evaluated in brochoalveolar lavage (BAL) fluids. Histological analysis of lungs, heart and liver tissues was also performed. BAL analysis showed that exposure to nBCMC or CMC did not induce major alterations in the assessed markers of cell damage, oxidative stress or inflammatory cell numbers in BAL fluid over time, even following cumulative treatments. $Avicel-plus^{(R)}$ CM 2159 significantly increased LDH release, detected 3 months after 4 weekly administrations. However, histological results revealed a chronic inflammatory response and tissue alterations, being hypertrophy of pulmonary arteries (observed 3 months after nBCMC treatment) of particular concern. These histological alterations remained after 6 months in animals treated with nBC, possibly due to foreign body reaction and the organism's inability to remove the fibers. Overall, despite being a safe and biocompatible biomaterial, BC-derived nanofibrils inhalation may lead to lung pathology and pose significant health risks.

Keywords

References

  1. Shvedova, A.A., Kisin, E.R., Yanamala, N., Farcas, M.T., Menas, A.L., Williams, A., Fournier, P.M., Reynolds, J.S., Gutkin, D.W., Star, A., Reiner, R.S., Halappanavar, S. and Kagan, V.E. (2016) Gender differences in murine pulmonary responses elicited by cellulose nanocrystals. Part. Fibre Toxicol., 13, 28. https://doi.org/10.1186/s12989-016-0140-x
  2. Vasconcelos, N.F., Feitosa, J.P., da Gama, F.M., Morais, J.P., Andrade, F.K., de Souza Filho, M.S. and Rosa, M.F. (2017) Bacterial cellulose nanocrystals produced under different hydrolysis conditions: Properties and morphological features. Carbohydr. Polym., 155, 425-431. https://doi.org/10.1016/j.carbpol.2016.08.090
  3. Martínez-Sanz, M., Olsson, R.T., Lopez-Rubio, A. and Lagaron, J.M. (2012) Development of bacterial cellulose nanowhiskers reinforced EVOH composites by electrospinning. J. Appl. Polym. Sci., 124, 1398-1408. https://doi.org/10.1002/app.35052
  4. Svensson, A., Nicklasson, E., Harrah, T., Panilaitis, B., Kaplan, D.L., Brittberg, M. and Gatenholm, P. (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials, 26, 419-431. https://doi.org/10.1016/j.biomaterials.2004.02.049
  5. Leitão, A., Silva, J., Dourado, F. and Gama, M. (2013) Production and characterization of a new bacterial cellulose/ poly(vinyl alcohol) nanocomposite. Materials, 6, 1956-1966. https://doi.org/10.3390/ma6051956
  6. Ummartyotin, S. and Manuspiya, H. (2015) A critical review on cellulose: from fundamental to an approach on sensor technology. Renew. Sust. Energ. Rev., 41, 402-412. https://doi.org/10.1016/j.rser.2014.08.050
  7. Solway, D.R., Consalter, M. and Levinson, D.J. (2010) Microbial cellulose wound dressing in the treatment of skin tears in the frail elderly. Wounds, 22, 17-19.
  8. Fontana, J.D., de Souza, A.M., Fontana, C.K., Torriani, I.L., Moreschi, J.C., Gallotti, B.J., de Souza, S.J., Narcisco, G.P., Bichara, J.A. and Farah, L.F. (1990) Acetobacter cellulose pellicle as a temporary skin substitute. Appl. Biochem. Biotechnol., 24-25, 253-264.
  9. Andrade, F.K., Costa, R., Domingues, L., Soares, R. and Gama, M. (2010) Improving bacterial cellulose for blood vessel replacement: Functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide. Acta Biomater., 6, 4034-4041. https://doi.org/10.1016/j.actbio.2010.04.023
  10. Bäckdahl, H., Risberg, B. and Gatenholm, P. (2011) Observations on bacterial cellulose tube formation for application as vascular graft. Mater. Sci. Eng. C., 31, 14-21. https://doi.org/10.1016/j.msec.2010.07.010
  11. Leitao, A.F., Gupta, S., Silva, J.P., Reviakine, I. and Gama, M. (2013) Hemocompatibility study of a bacterial cellulose/polyvinyl alcohol nanocomposite. Colloids Surf. B Biointerfaces, 111, 493-502. https://doi.org/10.1016/j.colsurfb.2013.06.031
  12. Backdahl, H., Helenius, G., Bodin, A., Nannmark, U., Johansson, B.R., Risberg, B. and Gatenholm, P. (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials, 27, 2141-2149. https://doi.org/10.1016/j.biomaterials.2005.10.026
  13. Andrade, F.K., Pertile, R.A.N., Dourado, F. and Gama, M. (2010) Bacterial cellulose: properties, production and applications in Cellulose: Structure and Properties, Derivatives and Industrial Uses (Lejeune, A. and Deprez, T. Eds). Nova Science Publishers, Inc., pp. 427-458.
  14. Klemm, D., Schumann, D., Udhardt, U. and Marsch, S. (2001) Bacterial synthesized cellulose - artificial blood vessels for microsurgery. Prog. Polym. Sci., 26, 1561-1603. https://doi.org/10.1016/S0079-6700(01)00021-1
  15. Fu, L.N., Wang, W., Yu, L.J., Zhang, S.M. and Yang, G. (2009) Fabrication of novel cellulose/chitosan artificial skin composite. Mater. Sci. Forum, 610-613, 1034-1038. https://doi.org/10.4028/www.scientific.net/MSF.610-613.1034
  16. Millon, L.E., Guhados, G. and Wan, W. (2008) Anisotropic polyvinyl alcohol-Bacterial cellulose nanocomposite for biomedical applications. J. Biomed. Mater. Res. Part B Appl. Biomater., 86, 444-452. https://doi.org/10.1002/jbm.b.31040
  17. Martinez-Sanz, M., Lopez-Rubio, A. and Lagaron, J.M. (2012) Optimization of the dispersion of unmodified bacterial cellulose nanowhiskers into polylactide via melt compounding to significantly enhance barrier and mechanical properties. Biomacromolecules, 13, 3887-3899. https://doi.org/10.1021/bm301430j
  18. Zhou, C. and Wu, Q. (2012) Recent development in applications of cellulose nanocrystals for advanced polymer-based nanocomposites by novel fabrication strategies in Nanocrystals: Synthesis, Characterization and Applications (Neralla, S. Ed). IntechOpen.
  19. Charreau, H., Foresti, M.L. and Vazquez, A. (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat. Nanotechnol., 7, 56-80. https://doi.org/10.2174/187221013804484854
  20. Li, Y. and Ragauskas, A.J. (2011) Cellulose nano whiskers as a reinforcing filler in polyurethanes in Avances in Diverse Industrial Applications Of Nanocomposites (Reddy, B. Ed.). IntechOpen, pp. 19-36.
  21. Pitkanen, M., Kangas, H., Laitinen, O., Sneck, A., Lahtinen, P., Peresin, M.S. and Niinimaki, J. (2014) Characteristics and safety of nano-sized cellulose fibrils. Cellulose, 21, 3871-3886. https://doi.org/10.1007/s10570-014-0397-x
  22. Dugan, J.M., Gough, J.E. and Eichhorn, S.J. (2013) Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine (Lond.), 8, 287-298. https://doi.org/10.2217/nnm.12.211
  23. Martínez-Sanz, M., Lopez-Rubio, A. and Lagaron, J.M. (2011) Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers. Carbohydr. Polym., 85, 228-236. https://doi.org/10.1016/j.carbpol.2011.02.021
  24. Nechyporchuk, O., Belgacem, M.N. and Bras, J. (2016) Production of cellulose nanofibrils: a review of recent advances. Ind. Crops Prod., 93, 2-25. https://doi.org/10.1016/j.indcrop.2016.02.016
  25. Cullen, R., Miller, B., Jones, A. and Davis, J. (2002) Toxicity of cellulose fibres. Ann. Occup. Hyg., 46, 81-84. https://doi.org/10.1093/annhyg/46.suppl_1.81
  26. Future Markets Inc. (2012) Nanocellulose: A Technology and Market Study, pp. 35.
  27. Hull, M. and Bowman, D. (2014) Nanotechnology Environmental Health and Safety (2nd edition), Elsevier.
  28. Kovacs, T., Naish, V., O'Connor, B., Blaise, C., Gagne, F., Hall, L., Trudeau, V. and Martel, P. (2010) An ecotoxicological characterization of nanocrystalline cellulose (NCC). Nanotoxicology, 4, 255-270. https://doi.org/10.3109/17435391003628713
  29. Shi, Q., Li, Y., Sun, J., Zhang, H., Chen, L., Chen, B., Yang, H. and Wang, Z. (2012) The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic protein-2. Biomaterials, 33, 6644-6649. https://doi.org/10.1016/j.biomaterials.2012.05.071
  30. Zaborowska, M., Bodin, A., Bäckdahl, H., Popp, J., Goldstein, A. and Gatenholm, P. (2010) Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater., 6, 2540-2547. https://doi.org/10.1016/j.actbio.2010.01.004
  31. Cullen, R.T., Miller, B.G., Jones, A.D. and Davis, J.M.G. (2002) Toxicity of cellulose fibres. Ann. Occup. Hyg., 46, 81-84. https://doi.org/10.1093/annhyg/46.suppl_1.81
  32. Cullen, R.T., Searl, A., Miller, B.G., Davis, J.M. and Jones, A.D. (2000) Pulmonary and intraperitoneal inflammation induced by cellulose fibres. J. Appl. Toxicol., 20, 49-60. https://doi.org/10.1002/(SICI)1099-1263(200001/02)20:1<49::AID-JAT627>3.0.CO;2-L
  33. Catalan, J., Rydman, E., Aimonen, K., Hannukainen, K.S., Suhonen, S., Vanhala, E., Moreno, C., Meyer, V., Perez, D.D., Sneck, A., Forsstrom, U., Hojgaard, C., Willemoes, M., Winther, J.R., Vogel, U., Wolff, H., Alenius, H., Savolainen, K.M. and Norppa, H. (2016) Genotoxic and inflammatory effects of nanofibrillated cellulose in murine lungs. Mutagenesis, 32, 23-32. https://doi.org/10.1093/mutage/gew035
  34. Yanamala, N., Farcas, M.T., Hatfield, M.K., Kisin, E.R., Kagan, V.E., Geraci, C.L. and Shvedova, A.A. (2014) In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: a renewable and sustainable nanomaterial of the future. ACS Sustain. Chem. Eng., 2, 1691-1698. https://doi.org/10.1021/sc500153k
  35. Schramm, M. and Hestrin, S. (1954) Synthesis of cellulose by Acetobacter xylinum. I. Micromethod for the determination of celluloses. Biochem. J., 56, 163-166. https://doi.org/10.1042/bj0560163
  36. Delgado, A.V., Gonzalez-Caballero, F., Hunter, R.J., Koopal, L.K. and Lyklema, J. (2007) Measurement and interpretation of electrokinetic phenomena. J. Colloid. Interface Sci., 309, 194-224. https://doi.org/10.1016/j.jcis.2006.12.075
  37. Segal, L., Creely, J.J., Martin, A.E. and Conrad, C.M. (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J., 29, 786-794. https://doi.org/10.1177/004051755902901003
  38. Torrado, E., Fraga, A.G., Logarinho, E., Martins, T.G., Carmona, J.A., Gama, J.B., Carvalho, M.A., Proenca, F., Castro, A.G. and Pedrosa, J. (2010) IFN-gamma-dependent activation of macrophages during experimental infections by Mycobacterium ulcerans is impaired by the toxin mycolactone. J. Immunol., 184, 947-955. https://doi.org/10.4049/jimmunol.0902717
  39. Mullane, K.M., Kraemer, R. and Smith, B. (1985) Myeloperoxidase activity as a quantitative assessment of neutrophil infiltration into ischemic myocardium. J. Pharmacol. Methods, 14, 157-167. https://doi.org/10.1016/0160-5402(85)90029-4
  40. Renne, R., Brix, A., Harkema, J., Herbert, R., Kittel, B., Lewis, D., March, T., Nagano, K., Pino, M., Rittinghausen, S., Rosenbruch, M., Tellier, P. and Wohrmann, T. (2009) Proliferative and nonproliferative lesions of the rat and mouse respiratory tract. Toxicol. Pathol., 37, 5S-73S. https://doi.org/10.1177/0192623309353423
  41. Lee, K.-Y., Quero, F., Blaker, J.J., Hill, C.A.S., Eichhorn, S.J. and Bismarck, A. (2011) Surface only modification of bacterial cellulose nanofibres with organic acids. Cellulose, 18, 595-605. https://doi.org/10.1007/s10570-011-9525-z
  42. Mirhosseini, H., Tan, C.P., Hamid, N.S.A. and Yusof, S. (2008) Effect of Arabic gum, xanthan gum and orange oil contents on ${\zeta}$-potential, conductivity, stability, size index and pH of orange beverage emulsion. Colloids Surf. A, 315, 47-56. https://doi.org/10.1016/j.colsurfa.2007.07.007
  43. Duarte, E.B., das Chagas, B.S., Andrade, F.K., Brígida, A.I.S., Borges, M.F., Muniz, C.R., Souza Filho, M.d.S.M., Morais, J.P.S., Feitosa, J.P.A. and Rosa, M.F. (2015) Production of hydroxyapatite-bacterial cellulose nanocomposites from agroindustrial wastes. Cellulose, 22, 3177-3187. https://doi.org/10.1007/s10570-015-0734-8
  44. Raetz, C.R. and Whitfield, C. (2002) Lipopolysaccharide endotoxins. Annu. Rev. Biochem., 71, 635-700. https://doi.org/10.1146/annurev.biochem.71.110601.135414
  45. Cundell, A.M. (2014) Bacterial endotoxin requirements for dry powder inhalants and their excipients: are they critical quality attributes? PDA J. Pharm. Sci. Technol., 68, 386-393. https://doi.org/10.5731/pdajpst.2014.00997
  46. U.S. Food and Drug Administration (1987) Guideline on Validation of the Limulus Amebocyte Lysate Test as an Endproduct Endotoxin Test for Human and Animal Parenteral Drugs, Biological Products and Medical Devices, US Department of Health and Human Services, Public Health Service, Food and Drug Administration.
  47. Vartiainen, J., Pohler, T., Sirola, K., Pylkkanen, L., Alenius, H., Hokkinen, J., Tapper, U., Lahtinen, P., Kapanen, A., Putkisto, K., Hiekkataipale, P., Eronen, P., Ruokolainen, J. and Laukkanen, A. (2011) Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. Cellulose, 18, 775-786. https://doi.org/10.1007/s10570-011-9501-7
  48. Lopes, V.R., Sanchez-Martinez, C., Stromme, M. and Ferraz, N. (2017) In vitro biological responses to nanofibrillated cellulose by human dermal, lung and immune cells: surface chemistry aspect. Part. Fibre Toxicol., 14, 1. https://doi.org/10.1186/s12989-016-0182-0
  49. Kim, G.-D., Yang, H., Park, H.R., Park, C.-S., Park, Y.S. and Lee, S.E. (2013) Evaluation of immunoreactivity of in vitro and in vivo models against bacterial synthesized cellulose to be used as a prosthetic biomaterial. BioChip J., 7, 201-209. https://doi.org/10.1007/s13206-013-7302-9
  50. Meng, G., Zhao, J., Wang, H.M., Ding, R.G., Zhang, X.C., Huang, C.Q. and Ruan, J.X. (2010) Cell injuries of the blood-air barrier in acute lung injury caused by perfluoroisobutylene exposure. J. Occup. Health, 52, 48-57. https://doi.org/10.1539/joh.L9047
  51. Noel-Georis, I., Bernard, A., Falmagne, P. and Wattiez, R. (2001) Proteomics as the tool to search for lung disease markers in bronchoalveolar lavage. Dis. Markers, 17, 271-284. https://doi.org/10.1155/2001/607263
  52. Henderson, R.F., Damon, E.G. and Henderson, T.R. (1978) Early damage indicators in the the lung I. Lactate dehydrogenase activity in the airways. Toxicol. Appl. Pharmacol., 44, 291-297. https://doi.org/10.1016/0041-008X(78)90191-6
  53. Mantecca, P., Sancini, G., Moschini, E., Farina, F., Gualtieri, M., Rohr, A., Miserocchi, G., Palestini, P. and Camatini, M. (2009) Lung toxicity induced by intratracheal instillation of size-fractionated tire particles. Toxicol. Lett., 189, 206-214. https://doi.org/10.1016/j.toxlet.2009.05.023
  54. Swedin, L., Arrighi, R. and ersson-Willman, B., Murray, A., Chen, Y., Karlsson, M.C.I., Georén, S.K., Tkach, A.V., Shvedova, A.A., Fadeel, B., Barragan, A. and Scheynius, A. (2012) Pulmonary exposure to single-walled carbon nanotubes does not affect the early immune response against Toxoplasma gondii. Part. Fibre Toxicol., 9, 16. https://doi.org/10.1186/1743-8977-9-16
  55. Clift, M.J., Foster, E.J., Vanhecke, D., Studer, D., Wick, P., Gehr, P., Rothen-Rutishauser, B. and Weder, C. (2011) Investigating the interaction of cellulose nanofibers derived from cotton with a sophisticated 3D human lung cell coculture. Biomacromolecules, 12, 3666-3673. https://doi.org/10.1021/bm200865j
  56. Adamis, Z., Tatrai, E., Honma, K. and Ungvary, G. (1997) In vitro and in vivo assessment of the pulmonary toxicity of cellulose. J. Appl. Toxicol., 17, 137-141. https://doi.org/10.1002/(SICI)1099-1263(199703)17:2<137::AID-JAT423>3.0.CO;2-I
  57. Chaplin, D.D. (2010) Overview of the immune response. J. Allergy Clin. Immunol., 125, S3-23. https://doi.org/10.1016/j.jaci.2009.12.980
  58. Liimatainen, H., Haavisto, S., Haapala, A. and Niinimaki, J. (2009) Influence of adsorbed and dissolved carboxymethyl cellulose on fibre suspension dispersing, dewaterability, and fines retention. Bioresources, 4, 321-340.
  59. Winter, H.T., Cerclier, C., Delorme, N., Bizot, H., Quemener, B. and Cathala, B. (2010) Improved colloidal stability of bacterial cellulose nanocrystal suspensions for the elaboration of spin-coated cellulose-based model surfaces. Biomacromolecules, 11, 3144-3151. https://doi.org/10.1021/bm100953f
  60. Khaled, B. and Abdelbaki, B. (2012) Rheological and electrokinetic properties of carboxymethylcellulose-water dispersions in the presence of salts. Int. J. Phys. Sci., 7, 1790 - 1798.
  61. He, M., Cho, B.-U., Lee, Y.K. and Won, J.M. (2016) Utilizing cellulose nanofibril as an eco-friendly flocculant for filler flocculation in papermaking. BioRes, 11, 10296-10313.
  62. Sheykhnazari, S., Tabarsa, T., Ashori, A., Shakeri, A. and Golalipour, M. (2011) Bacterial synthesized cellulose nanofibers; Effects of growth times and culture mediums on the structural characteristics. Carbohydr. Polym., 86, 1187-1191. https://doi.org/10.1016/j.carbpol.2011.06.011
  63. Gama, M., Gatenholm, P. and Klemm, D. (2012) Bacterial NanoCellulose: a Sophisticated Multifunctional Material., CRC Press, Boca Raton, FL.
  64. Kose, R., Mitani, I., Kasai, W. and Kondo, T. (2011) "Nanocellulose" as a single nanofiber prepared from pellicle secreted by Gluconacetobacter xylinus using aqueous counter collision. Biomacromolecules, 12, 716-720. https://doi.org/10.1021/bm1013469
  65. Saito, T., Nishiyama, Y., Putaux, J.L., Vignon, M. and Isogai, A. (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules, 7, 1687-1691. https://doi.org/10.1021/bm060154s
  66. Lavoine, N., Desloges, I., Dufresne, A. and Bras, J. (2012) Microfibrillated cellulose - its barrier properties and applications in cellulosic materials: a review. Carbohydr. Polym., 90, 735-764. https://doi.org/10.1016/j.carbpol.2012.05.026
  67. U.S. Food and Drug Administration (2012) Guidance for Industry: Pyrogen and Endotoxins Testing: Questions and Answers, Silver Spring, MD, p. 11.
  68. Malyala, P. and Singh, M. (2008) Endotoxin limits in formulations for preclinical research. J. Pharm. Sci., 97, 2041-2044. https://doi.org/10.1002/jps.21152
  69. Martinez Avila, H., Schwarz, S., Feldmann, E.M., Mantas, A., von Bomhard, A., Gatenholm, P. and Rotter, N. (2014) Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Appl. Microbiol. Biotechnol., 98, 7423-7435. https://doi.org/10.1007/s00253-014-5819-z
  70. Bodin, A., Bharadwaj, S., Wu, S., Gatenholm, P., Atala, A. and Zhang, Y. (2010) Tissue-engineered conduit using urinederived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials, 31, 8889- 8901. https://doi.org/10.1016/j.biomaterials.2010.07.108
  71. Leitão, A.F., Faria, M.A., Faustino, A.M., Moreira, R., Mela, P., Loureiro, L., Silva, I. and Gama, M. (2016) A novel small-caliber bacterial cellulose vascular prosthesis: production, characterization, and preliminary in vivo testing. Macromol. Biosci., 16, 139-150. https://doi.org/10.1002/mabi.201500251
  72. Moreira, S., Silva, N.B., Almeida-Lima, J., Rocha, H.A., Medeiros, S.R., Alves, C., Jr. and Gama, F.M. (2009) BC nanofibres: in vitro study of genotoxicity and cell proliferation. Toxicol. Lett., 189, 235-241. https://doi.org/10.1016/j.toxlet.2009.06.849
  73. Occupational Safety and Health Administration (OSHA) of the United States Department of Labor. CFR Code of Federal Regulations, U.S. Government Printing Office, Office of the Federal Register, Washington, DC.
  74. Yanamala, N., Hatfield, M.K., Farcas, M.T., Schwegler-Berry, D., Hummer, J.A., Shurin, M.R., Birch, M.E., Gutkin, D.W., Kisin, E., Kagan, V.E., Bugarski, A.D. and Shvedova, A.A. (2013) Biodiesel versus diesel exposure: enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung. Toxicol. Appl. Pharmacol., 272, 373-383. https://doi.org/10.1016/j.taap.2013.07.006
  75. Fröhlich, E., Mercuri, A., Wu, S. and Salar-Behzadi, S. (2016) Measurements of deposition, lung surface area and lung fluid for simulation of inhaled compounds. Front. Pharmacol., 7, 181.
  76. Task Group of the International Commission on Radiological Protection. (1994) ICRP Human Respiratory Tract Model for Radiological Protection, Ann. ICRP.
  77. Bates, D.V., Fish, B.R., Hatch, T.F., Mercer, T.T. and Morrow, P.E. (1966) Deposition and retention models for internal dosimetry of the human respiratory tract. Task group on lung dynamics. Health Phys., 12, 173-207.
  78. Beppu, H., Ichinose, F., Kawai, N., Jones, R.C., Yu, P.B., Zapol, W.M., Miyazono, K., Li, E. and Bloch, K.D. (2004) BMPR-II heterozygous mice have mild pulmonary hypertension and an impaired pulmonary vascular remodeling response to prolonged hypoxia. Am. J. Physiol. Lung Cell Mol. Physiol., 287, L1241-L1247. https://doi.org/10.1152/ajplung.00239.2004
  79. Tátrai, E., Brozik, M., Adamis, Z., Meretey, K. and Ungvary, G. (1996) In vivo pulmonary toxicity of cellulose in rats. J. Appl. Toxicol., 16, 129-135. https://doi.org/10.1002/(SICI)1099-1263(199603)16:2<129::AID-JAT316>3.0.CO;2-C
  80. Muhle, H., Ernst, H. and Bellmann, B. (1997) Investigation of the durability of cellulose fibres in rat lungs. Ann. Occup. Hyg., 41, 184-188. https://doi.org/10.1016/S0003-4878(97)80036-1
  81. Jeong, S.I., Lee, S.E., Yang, H., Jin, Y.-H., Park, C.-S. and Park, Y.S. (2010) Toxicologic evaluation of bacterial synthesized cellulose in endothelial cells and animals. Mol. Cell. Toxicol., 6, 370-377. https://doi.org/10.1007/s13273-010-0049-7
  82. Moon, R.J., Martini, A., Nairn, J., Simonsen, J. and Youngblood, J. (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev., 40, 3941-3994. https://doi.org/10.1039/c0cs00108b
  83. Stefaniak, A.B., Seehra, M.S., Fix, N.R. and Leonard, S.S. (2014) Lung biodurability and free radical production of cellulose nanomaterials. Inhal. Toxicol., 26, 733-749. https://doi.org/10.3109/08958378.2014.948650
  84. Zhang, Z., Ortiz, O., Goyal, R. and Kohn, J. (2014) Chapter 23 - biodegradable polymers A2 - Lanza, Robert in Principles of Tissue Engineering (4th edition) (Langer, R. and Vacanti, J. Eds.). Academic Press, Boston, pp. 441-473.
  85. Hasenberg, M., Stegemann-Koniszewski, S. and Gunzer, M. (2013) Cellular immune reactions in the lung. Immunol. Rev., 251, 189-214. https://doi.org/10.1111/imr.12020
  86. Endes, C., Mueller, S., Kinnear, C., Vanhecke, D., Foster, E.J., Petri-Fink, A., Weder, C., Clift, M.J. and Rothen- Rutishauser, B. (2015) Fate of cellulose nanocrystal aerosols deposited on the lung cell surface in vitro. Biomacromolecules, 16, 1267-1275. https://doi.org/10.1021/acs.biomac.5b00055
  87. Labiris, N.R. and Dolovich, M.B. (2003) Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br. J. Clin. Pharmacol., 56, 588-599. https://doi.org/10.1046/j.1365-2125.2003.01892.x