• Title/Summary/Keyword: charge detector

Search Result 198, Processing Time 0.032 seconds

Noise Reduction of medical X-ray Image using Wavelet Threshold in Cone-beam CT (Cone-beam CT에서 웨이브렛 역치값을 이용한 x-ray 영상에서의 노이즈 제거)

  • Park, Jong-Duk;Huh, Young;Jin, Seung-Oh;Jeon, Sung-Chae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.6
    • /
    • pp.42-48
    • /
    • 2007
  • In x-ray imaging system, two kinds of noises are involved. First, the charge generated from the radiation interaction with the detector during exposure. Second, the signal is then added by readout electronics noise. But, x-ray images are not modeled by Gaussian noise but as the realization of a Poisson process. In this paper, we apply a new approach to remove Poisson noise from medical X-ray image in the wavelet domain, the applied methods shows more excellent results in cone-beam CT.

Performance Measurement of SMT(Slewing Mirror Telescope) Optical System

  • Ahn, Ki-Beom;Jeong, Soo-Min;Kim, Ji-Eun;Kim, Sug-Whan;Lee, Jik;Lim, Heui-Jin;Lindere, V.;Nam, Ji-Woo;Nam, Koo-Hyun;Park, Il-H.;Smoot, G.F.
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.23.1-23.1
    • /
    • 2011
  • The SMT is a subsystem of the UFFO (Ultra-Fast Flash Observatory) pathfinder onboard the Lomonosov spacecraft planed to be launched in November 2011. The UFFO is designed for extremely fast observation of optical afterglow of Gamma Ray Burst (GRB). This study is primarily concerned with performance measurement of the SMT optical system under the integration and test phase. SMT is a 100mm Ritchey-Chretien type telescope with a motorized slewing mirror and a $256{\times}256$ pixels Intensified Charge-Coupled Device (ICCD) of 22.2${\mu}m$ in pixel size. SMT is designed to operate over the wavelength coverage between 200 nm and 650 nm. It has 17 arcmin FOV (Field of View), providing 4arcsec in detector pixel resolution. In this study, we describe the integration and test process of the SMT optical system and interim performance measurement results with motorized slewing mirror and ICCD.

  • PDF

The Performance Improvement of a Linear CCD Sensor Using an Automatic Threshold Control Algorithm for Displacement Measurement

  • Shin, Myung-Kwan;Choi, Kyo-Soon;Park, Kyi-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1417-1422
    • /
    • 2005
  • Among the sensors mainly used for displacement measurement, there are a linear CCD(Charge Coupled Device) and a PSD(Position Sensitive Detector) as a non-contact type. Their structures are different very much, which means that the signal processing of both sensors should be applied in the different ways. Most of the displacement measurement systems to get the 3-D shape profile of an object using a linear CCD are a computer-based system. It means that all of algorithms and mathematical operations are performed through a computer program to measure the displacement. However, in this paper, the developed system has microprocessor and other digital components that make the system measure the displacement of an object without a computer. The thing different from the previous system is that AVR microprocessor and FPGA(Field Programmable Gate Array) technology, and a comparator is used to play the role of an A/D(Analog to Digital) converter. Furthermore, an ATC(Automatic Threshold Control) algorithm is applied to find the highest pixel data that has the real displacement information. According to the size of the light circle incident on the surface of the CCD, the threshold value to remove the noise and useless data is changed by the operation of AVR microprocessor. The total system consists of FPGA, AVR microprocessor, and the comparator. The developed system has the improvement and shows the better performance than the system not using the ATC algorithm for displacement measurement.

  • PDF

A Reference Spur Suppressed PLL with Two-Symmetrical Loops (기준 신호 스퍼의 크기를 줄인 두 개의 대칭 루프를 가진 위상고정루프)

  • Choi, Hyun-Woo;Choi, Young-Shig
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.99-105
    • /
    • 2014
  • A reference spur suppressed PLL with two-symmetrical loops without changing the bandwidth which is optimized to suppress phase noise and reduce locking time has been designed. The principle of suppressing a reference signal spur is to stabilize the input voltage of voltage controlled oscillator (VCO). The proposed PLL consists of a phase-frequency detector(PFD) which has two outputs, two charge pumps(CP), two loop filters(LF), a divider and a VCO which has two inputs. Simulation results with $0.18{\mu}m$ CMOS process show that the reference spur is approximately suppressed to 1/2 of the reference spur in a conventional PLL. Even though there is a 5% process variation in the magnitude of R and C, the simulation result shows that the reference spur is still suppressed to 1/2 of the reference spur in a conventional PLL. The power consumption is 6.3mW at the power supply of 1.8V.

Design of a CMOS Frequency Synthesizer for FRS Band (UHF FRS 대역 CMOS PLL 주파수 합성기 설계)

  • Lee, Jeung-Jin;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.12
    • /
    • pp.941-947
    • /
    • 2017
  • This paper reports a fractional-N phase-locked-loop(PLL) frequency synthesizer that is implemented in a $0.35-{\mu}m$ standard CMOS process and generates a quadrature signal for an FRS terminal. The synthesizer consists of a voltage-controlled oscillator(VCO), a charge pump(CP), loop filter(LF), a phase frequency detector(PFD), and a frequency divider. The VCO has been designed with an LC resonant circuit to provide better phase noise and power characteristics, and the CP is designed to be able to adjust the pumping current according to the PFD output. The frequency divider has been designed by a 16-divider pre-scaler and fractional-N divider based on the third delta-sigma modulator($3^{rd}$ DSM). The LF is a third-order RC filter. The measured results show that the proposed device has a dynamic frequency range of 460~510 MHz and -3.86 dBm radio-frequency output power. The phase noise of the output signal is -94.8 dBc/Hz, and the lock-in time is $300{\mu}s$.

Self-Assembly and Electrochemical Properties of Viologen Particles (Viologen 분자의 자기조립과 전기화학적 특성)

  • Lee, Dong-Yun;Park, Sang-Hyun;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.452-455
    • /
    • 2004
  • In this paper, investigations of the SAMs(self-assembled monolayers) of a thiol-fuctionalized viologen derivatives, $V_8SH$ and $SH_8V_8SH$, where, V is N,N'-dialkylbipyridinium (i.e. a viologen group), have been carried out by elucidate voltammetry date. The redox reactions are highly reversible and can be cycled many times without significant side reaction, which has been known as a nano-gram order mass detector through resonant frequency change self-assembly process of the viologen has been investigated with $QCM({\Delta}F)$. The assembling process of the $V_8SH$ and $SH_8V_8SH$ monolayers can be finished completely in about 1 hour. The measured frequency shift for $V_8SH$ and $SH_8V_8SH$ were about 351 and 172 Hz, respectively. From these values, we calculated that the mass adsorbed $V_8SH$ and $SH_8V_8SH$ were about 375 and 183 ng. We believe that this mass loss is caused by the simultaneous loss of the anions present within the monolayer for charge compensation of the viologen dications and some solvent.

  • PDF

Design of a CMOS PLL with a Current Pumping Algorithm for Clock Syncronization (전류펌핑 알고리즘을 이용한 클락 동기용 CMOS PLL 설계)

  • 성혁준;윤광섭;강진구
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1B
    • /
    • pp.183-192
    • /
    • 2000
  • In this paper, the dual looped CMOS PLL with 3-250MHz input locking range at a single 13.3V is designed. This paper proposed a new PLL architecture with a current pumping algorithm to improve voltage-to-frequencylinearity of VCO(Voltage Controlled Oscillator). The designed VCO operates at a wide frequency range of75.8MHz-lGHz with a high linearity. Also, PFD(Phase frequency Detector) circuit preventing voltage fluctuation of the charge pump with loop filter circuit under the locked condition is designed. The simulation results of the PLL using 0.6 um N-well single poly triple metal CMOS technology illustrate a locking time of 3.5 us, a power dissipation of 92mW at 1GHz operating frequency with 125MHz of input frequency. Measured results show that the phase noise of VCO with V-I converter is -100.3dBc/Hz at a 100kHz offset frequency.

  • PDF

The electronic structure of the ion-beam-mixed Pt-Cu alloys by XPS and XANES

  • Lim, K.Y.;Lee, Y.S.;Chung, Y.D.;Lee, K.M.;Jeon, Y.;Whang, C.N.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.133-133
    • /
    • 1998
  • In the thin film alloy formation of the transition metals ion-beam-mixing technique forms a metastable structure which cannot be found in the arc-melted metal alloys. Sppecifically it is well known that the studies about the electronic structure of ion-beam-mixed alloys pprovide the useful information in understanding the metastable structures in the metal alloy. We studied the electronic change in the ion-beam-mixed ppt-Ct alloys by XppS and XANES. These analysis tools pprovide us information about the charge transfer in the valence band of intermetallic bonding. The multi-layered films were depposited on the SiO2 substrate by the sequential electron beam evapporation at a ppressure of less than 5$\times$10-7 Torr. These compprise of 4 ppairs of ppt and Cu layers where thicknesses of each layer were varied in order to change the alloy compposition. Ion-beam-mixing pprocess was carried out with 80 keV Ae+ ions with a dose of $1.5\times$ 1016 Ar+/cm2 at room tempperature. The core and valence level energy shift in these system were investigated by x-ray pphotoelectron sppectroscoppy(XppS) pphotoelectrons were excited by monochromatized Al K a(1486.6 eV) The ppass energy of the hemisppherical analyzer was 23.5 eV. Core-level binding energies were calibrated with the Fermi level edge. ppt L3-edge and Cu K-edge XANES sppectra were measured with the flourescence mode detector at the 3C1 beam line of the ppLS (ppohang light source). By using the change of White line(WL) area of the each metal sites and the core level shift we can obtain the information about the electrons pparticippating in the intermetallic bonding of the ion-beam-mixed alloys.

  • PDF

Application of Graphene in Photonic Integrated Circuits

  • Kim, Jin-Tae;Choe, Seong-Yul;Choe, Chun-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.196-196
    • /
    • 2012
  • Graphene, two-dimensional one-atom-thick planar sheet of carbon atoms densely packed in a honeycomb crystal lattice, has grabbled appreciable attention due to its extraordinary mechanical, thermal, electrical, and optical properties. Based on the graphene's high carrier mobility, high frequency graphene field effect transistors have been developed. Graphene is useful for photonic components as well as for the applications in electronic devices. Graphene's unique optical properties allowed us to develop ultra wide-bandwidth optical modulator, photo-detector, and broadband polarizer. Graphene can support SPP-like surface wave because it is considered as a two-dimensional metal-like systems. The SPPs are associated with the coupling between collective oscillation of free electrons in the metal and electromagnetic waves. The charged free carriers in the graphene contribute to support the surface waves at the graphene-dielectric interface by coupling to the electromagnetic wave. In addition, graphene can control the surface waves because its charge carrier density is tunable by means of a chemical doping method, varying the Fermi level by applying gate bias voltage, and/or applying magnetic field. As an extended application of graphene in photonics, we investigated the characteristics of the graphene-based plasmonic waveguide for optical signal transmission. The graphene strips embedded in a dielectric are served as a high-frequency optical signal guiding medium. The TM polarization wave is transmitted 6 mm-long graphene waveguide with the averaged extinction ratio of 19 dB at the telecom wavelength of $1.31{\mu}m$. 2.5 Gbps data transmission was successfully accomplished with the graphene waveguide. Based on these experimental results, we concluded that the graphene-based plasmonic waveguide can be exploited further for development of next-generation integrated photonic circuits on a chip.

  • PDF

Design of A Clock-and-Data Recovery Circuit for Detection and Reconstruction of Broadband Multi-rate Optical Signals (다중속도의 광신호 추출 및 클락-데이터 복원회로 설계)

  • Kim, Kang-Wook
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.191-197
    • /
    • 2003
  • Due to explosive increase of internet usage, broadband data transmission using optical fibers is broadly used. In order to decrease distortion during long distance transmission, the optical signal need to be restored, typically, by converting the optical signal into the electrical signal. The optical signal is converted into the electrical signal using a photo-diode, and then a clock-and-recovery (CDR) circuit is used to recover the clock and retime the data. In this study, a clock-and-data recovery circuit has been designed using a standard 1.8 V $0.18\;{\mu}m$ CMOS process. With this CDR circuit, the improved phase detector and charge pump have been utilized. Also, by using a ring oscillator, the CDR circuit can recover clock and data from broadband multi-rate data ranging between 750 Mb/s and 2.85 Gb/s.