• 제목/요약/키워드: characterization of Banach spaces

검색결과 16건 처리시간 0.022초

k- DENTING POINTS AND k- SMOOTHNESS OF BANACH SPACES

  • Wulede, Suyalatu;Shang, Shaoqiang;Bao, Wurina
    • Korean Journal of Mathematics
    • /
    • 제24권3호
    • /
    • pp.397-407
    • /
    • 2016
  • In this paper, the concepts of k-smoothness, k-very smoothness and k-strongly smoothness of Banach spaces are dealt with together briefly by introducing three types k-denting point regarding different topology of conjugate spaces of Banach spaces. In addition, the characterization of first type ${\omega}^*-k$ denting point is described by using the slice of closed unit ball of conjugate spaces.

PLANK PROBLEMS, POLARIZATION AND CHEBYSHEV CONSTANTS

  • Revesz, Szilard-Gy.;Sarantopoulos, Yannis
    • 대한수학회지
    • /
    • 제41권1호
    • /
    • pp.157-174
    • /
    • 2004
  • In this work we discuss "plank problems" for complex Banach spaces and in particular for the classical $L^{p}(\mu)$ spaces. In the case $1\;{\leq}\;p\;{\leq}\;2$ we obtain optimal results and for finite dimensional complex Banach spaces, in a special case, we have improved an early result by K. Ball [3]. By using these results, in some cases we are able to find best possible lower bounds for the norms of homogeneous polynomials which are products of linear forms. In particular, we give an estimate in the case of a real Hilbert space which seems to be a difficult problem. We have also obtained some results on the so-called n-th (linear) polarization constant of a Banach space which is an isometric property of the space. Finally, known polynomial inequalities have been derived as simple consequences of various results related to plank problems.

FUNCTIONS ATTAINING THE SUPREMUM AND ISOMORPHIC PROPERTIES OF A BANACH SPACE

  • D. Acosta, Maria ;Becerra Guerrero, Julio ;Ruiz Galan, Manuel
    • 대한수학회지
    • /
    • 제41권1호
    • /
    • pp.21-38
    • /
    • 2004
  • We prove that a Banach space that is convex-transitive and such that for some element u in the unit sphere, and for every subspace Μ containing u, it happens that the subset of norm attaining functionals on Μ is second Baire category in $M^{*}$ is, in fact, almost-transitive and superreflexive. We also obtain a characterization of finite-dimensional spaces in terms of functions that attain their supremum: a Banach space is finite-dimensional if, for every equivalent norm, every rank-one operator attains its numerical radius. Finally, we describe the subset of norm attaining functionals on a space isomorphic to $\ell$$_1$, where the norm is the restriction of a Luxembourg norm on $L_1$. In fact, the subset of norm attaining functionals for this norm coincides with the subset of norm attaining functionals for the usual norm.m.

CHARACTERIZATION OF OPERATORS TAKING P-SUMMABLE SEQUENCES INTO SEQUENCES IN THE RANGE OF A VECTOR MEASURE

  • Song, Hi-Ja
    • East Asian mathematical journal
    • /
    • 제24권2호
    • /
    • pp.201-212
    • /
    • 2008
  • We characterize operators between Banach spaces sending unconditionally weakly p-summable sequences into sequences that lie in the range of a vector measure of bounded variation. Further, we describe operators between Banach spaces taking unconditionally weakly p-summable sequences into sequences that lie in the range of a vector measure.

  • PDF

NEW BANACH SPACES DEFINED BY THE DOMAIN OF RIESZ-FIBONACCI MATRIX

  • Alp, Pinar Zengin;Kara, Emrah Evren
    • Korean Journal of Mathematics
    • /
    • 제29권4호
    • /
    • pp.665-677
    • /
    • 2021
  • The main object of this study is to introduce the spaces $c_0({\hat{F}^q)$ and $c({\hat{F}^q)$ derived by the matrix ${\hat{F}^q$ which is the multiplication of Riesz matrix and Fibonacci matrix. Moreover, we find the 𝛼-, 𝛽-, 𝛾- duals of these spaces and give the characterization of matrix classes (${\Lambda}({\hat{F}^q)$, Ω) and (Ω, ${\Lambda}({\hat{F}^q)$) for 𝚲 ∈ {c0, c} and Ω ∈ {ℓ1, c0, c, ℓ}.

ALMOST REGULAR OPERATORS ARE REGULAR

  • Bermudez, Teresa;Gonzalez, Manuel
    • 대한수학회보
    • /
    • 제38권1호
    • /
    • pp.205-210
    • /
    • 2001
  • We give a characterization of regular operators that allows us to prove that a bounded operator acting between Banach spaces is almost regular if and only if it is regular, solving an open problem in [5]. As an application, we show that some operators in the closure of the set of all regular operators are regular.

  • PDF