CHARACTERIZATION OF OPERATORS TAKING P-SUMMABLE SEQUENCES INTO SEQUENCES IN THE RANGE OF A VECTOR MEASURE

Hi Ja Song

Abstract

We characterize operators between Banach spaces sending unconditionally weakly p-summable sequences into sequences that lie in the range of a vector measure of bounded variation. Further, we describe operators between Banach spaces taking unconditionally weakly p-summable sequences into sequences that lie in the range of a vector measure.

1. Introduction

The intriguing connection between the geometry of subsets of Banach spaces and vector measure theory is not confined to Radon-Nikodym considerations. Questions regarding the finer structure of the range of a vector measure have found interest since Liapounoff's discovery of his everintriguing convexity theorem which states that the range of a nonatomic vector measure with values in a finite dimensional space is compact and convex. The infinite dimensional version of Liapounoff's theorem remained resistant to analysis for a long time. It is an important fact, first established by Bartle, Dunford and Schwartz in the early fifties, that the range of a vector measure is always relatively weakly compact.

Among the relatively weakly compact subsets of Banach spaces, those that are the range of a vector measure occupy a special place ; a remarkable similarity to the relatively norm compact sets is evidenced. For instance, Diestel and Seifert [3] proved that any sequence in the range of a vector measure admits a subsequence with norm convergent arithmetic means, a phenomenon not shared by all weakly compact sets.

Any intuition gained by noting the similarities between relatively norm compact sets and sets arising as ranges of vector measures must be tempered by the fact that the closed unit ball of an infinite dimensional Banach space can be the range of a vector measure.

Received November 7, 2007.
2000 Mathematics Subject Classification. 46G10,47B10.
Key words and phrases. vector measures, p-summable sequences .

Anantharaman and Garg [1] proved that the closed unit ball of a Banach space X is the range of a vector measure if and only if the dual of a Banach space X is isometrically isomorphic to a reflexive subspace of $L^{1}(\mu)$ for some probability measure μ.

Anantharaman and Diestel [2] found that every weakly compact subset of $B D 1$ (the separable \mathcal{L}_{∞} space of Bourgain and Delbaen that has the weakly compact extension property) lies inside the range of a $B D 1$-valued measure. They also proved that every weakly 2 -summable sequence in a Banach space X lies inside the range of an X-valued measure.

Piñeiro and Rodriguez-Piazza [6] showed that the compact subset of a Banach space X lies inside the range of an X-valued measure if and only if the dual of a Banach space X can be embedded into an $L^{1}(\mu)$-space for a suitable measure μ.

It is an easy consequence of the celebrated Dvoretsky-Rogers theorem that given an infinite dimensional Banach space X, there is an X-valued measure that does not have finite variation [11]. Thus the question arose : Which Banach spaces X have the property that every compact subset of X lies inside the range of an X-valued measure of bounded variation? This was settled by Piñeiro and Rodriguez-Piazza [6]: Only finite-dimensional Banach spaces have this property.

Piñeiro [8] characterized Banach spaces X having the property that every weakly p-summable sequence in X lies inside the range of an $X^{* *}$-valued measure of bounded variation provided that $1<p<\infty$.

Piñeiro [9] also gave descriptions of Banach spaces X for which every unconditionally weakly p-summable sequence in X lies inside the range of an X-valued measure when $p>2$.

In this paper we deal with the above mentioned problems in the framework of operators acting between Banach spaces.

We introduce the space $\mathcal{R}\left(X_{p}^{u}, Y\right)$ of all operators from a Banach space X into a Banach space Y taking unconditionally weakly p-summable sequences in X into sequences that lie in the range of a Y-valued measure. In addition, we define $\mathcal{R}_{b v}\left(X_{p}^{u}, Y\right)$ as the set of all operators from a Banach space X into a Banach space Y sending unconditionally weakly p-summable sequences in X into sequences that lie in the range of a Y-valued measure with bounded variation.

We first provide a description of operators belonging to the space $\mathcal{R}_{b v}\left(X_{p}^{u}, Y\right)$ in terms of ($1, \mathrm{p}, 1$)-summing operators.

Next we give usable necessary and sufficient conditions for an operator to belong to the space $\mathcal{R}\left(X_{p}^{u}, Y\right)$.

Finally we turn to the consideration of sequences in the range of a vector measure and give usable necessary condition for a sequence in a Banach space X to lie in the range of an X-valued measure with relatively compact range under the hypothesis that every p-integral operator from X to ℓ_{1} is 1 -summing when $1<p<\infty$.

2. Definitions and Notations

We present some of the definitions and notation to be used. Throughout this paper X and Y denote Banach spaces.

A function μ from a σ-field Σ of subsets of a set Ω to a Banach space X is called a countably additive vector measure if $\mu\left(\cup_{n=1}^{\infty} E_{n}\right)=\sum_{n=1}^{\infty} \mu\left(E_{n}\right)$ in the norm topology of X for all sequences $\left(E_{n}\right)$ of pairwise disjoint members of Σ such that $\cup_{n=1}^{\infty} E_{n} \in \Sigma$. The range of μ will be denoted by $\operatorname{rg} \mu$. The variation of μ is the extended nonnegative function $|\mu|$ whose value on a set $E \in \Sigma$ is given by $|\mu|(E)=\sup _{\pi} \sum_{A \in \pi}\|\mu(A)\|$, where the supremum is taken over all partitions π of E into a finite number of pairwise disjoint members of Σ. If $|\mu|(\Omega)=\operatorname{tv}(\mu)<\infty$ then μ will be called a measure of bounded variation. The semivariation of μ is the extended nonnegative function $\|\mu\|$ whose value on a set $E \in \Sigma$ is given by $\|\mu\|(E)=\sup \left\{\left|x^{*} \circ \mu\right|(E): x^{*} \in X^{*},\left\|x^{*}\right\| \leq 1\right\}$, where $\left|x^{*} \circ \mu\right|$ is the variation of the real-valued measure $x^{*} \circ \mu$. If $\|\mu\|(\Omega)=\operatorname{tsv}(\mu)<$ ∞, then μ will be called a measure of bounded semivariation.

Notation. (1) The dual of a Banach space X is denoted by X^{*}.
(2) The closed unit ball of a Banach space X is denoted by B_{X}.
(3) The dual operator of an operator T is denoted by T^{*}.
(4) $\mathcal{B}(X, Y)$ denotes the set of all bounded linear operators from X into Y.
(5) For $1<p<\infty$, the conjugate exponent of p is denoted by p^{\prime}, i.e. $1 / p+1 / p^{\prime}=1$.

The space $\mathcal{R}(X)$ is defined to consist of all sequences $\left(x_{n}\right)$ in X such that there exists an X-valued measure μ satisfying $\left\{x_{n}: n \in \mathbb{N}\right\} \subset \operatorname{rg} \mu$. For each $\left(x_{n}\right) \in \mathcal{R}(X)$, define $\left\|\left(x_{n}\right)\right\|_{r}=\inf \operatorname{tsv}(\mu)$, where the infimum is taken over all vector measures μ as above.

The space $\mathcal{R}_{c}(X)$ consists of all sequences in X that lie inside the range of an X-valued measure with relatively compact range. If $\left(x_{n}\right)$ belongs to $\mathcal{R}_{c}(X)$ then proposition 1.4 of [6] ensures that there exists an unconditionally convergent series $\sum_{k=1}^{\infty} y_{k}$ in X for which $\left\{x_{n}: n \in \mathbb{N}\right\} \subset\left\{\sum_{k=1}^{\infty} \alpha_{k} y_{k}\right.$: $\left.\left(\alpha_{k}\right) \in \ell_{\infty},\left\|\left(\alpha_{k}\right)\right\|_{\infty} \leq 1\right\}$. For each $\left(x_{n}\right) \in \mathcal{R}_{c}(X)$, define $\left\|\left(x_{n}\right)\right\|_{r c}=$ $\inf \sup \left\{\sum_{k=1}^{\infty}\left|\left\langle x^{*}, y_{k}\right\rangle\right|: x^{*} \in B_{X^{*}}\right\}$, where the infimum is taken over all unconditionally convergent series $\sum_{k=1}^{\infty} y_{k}$ of the kind described above.

The space $\mathcal{R}_{b v}(X)$ is defined to consist of all sequences $\left(x_{n}\right)$ in X such that there exists an X-valued measure μ with bounded variation satisfying $\left\{x_{n}: n \in \mathbb{N}\right\} \subset \operatorname{rg} \mu$. For each $\left(x_{n}\right) \in \mathcal{R}_{b v}(X)$, set $\left\|\left(x_{n}\right)\right\|_{b v}=\inf \operatorname{tv}(\mu)$, where the infimum is taken over all vector measures μ as above.

The space $\mathcal{R}_{b v c}(X)$ consists of all sequences $\left(x_{n}\right)$ in X such that there exists an absolutely convergent series $\sum_{k=1}^{\infty} y_{k}$ in X satisfying $\left\{x_{n}: n \in \mathbb{N}\right\} \subset$ $\left\{\sum_{k=1}^{\infty} \alpha_{k} y_{k}:\left(\alpha_{k}\right) \in \ell_{\infty},\left\|\left(\alpha_{k}\right)\right\|_{\infty} \leq 1\right\}$. For each $\left(x_{n}\right) \in \mathcal{R}_{b v c}(X)$, let
$\left\|\left(x_{n}\right)\right\|_{b v c}=\inf \sum_{k=1}^{\infty}\left\|y_{k}\right\|$, where the infimum is extended over all such absolutely convergent series $\sum_{k=1}^{\infty} y_{k}$.

Let $[\mathcal{A}, \alpha]$ be a Banach operator ideal. We say that the operator $T: X \rightarrow Y$ belongs to $\mathcal{A}^{*}(X, Y)$ provided there is a constant $C \geq 0$ such that regardless of the finite dimensional normed spaces E and F and operators $a \in \mathcal{B}(E, X), b \in$ $\mathcal{B}(Y, F)$ and $U \in \mathcal{B}(F, E)$, the composition $E \xrightarrow{a} X \xrightarrow{T} Y \xrightarrow{b} F \xrightarrow{U} E$ satisfies $|\operatorname{tr}(U b T a)| \leq C \cdot\|a\| \cdot\|b\| \cdot \alpha(U)$. The collection of all such C has an infimum, which is denoted by $\alpha^{*}(T)$. The Banach operator ideal $\left[\mathcal{A}^{*}, \alpha^{*}\right]$ is called the adjoint operator ideal of $[\mathcal{A}, \alpha]$.

For $1 \leq p \leq \infty$, an operator $T \in \mathcal{B}(X, Y)$ is called p-integral if there are a probability measure μ and operators $A \in \mathcal{B}\left(L^{p}(\mu), Y^{* *}\right)$ and $B \in \mathcal{B}\left(X, L^{\infty}(\mu)\right)$ such that $\kappa_{Y} \circ T=A \circ i_{p} \circ B$, where $i_{p}: L^{\infty}(\mu) \rightarrow L^{p}(\mu)$ is the formal identity. The p-integral norm of T is defined by $\imath_{p}(T)=\inf \{\|A\|\|B\|\}$, where the infimum is extended over all measures μ and operators A and B as above. The collection of all p-integral operators from X into Y is denoted by $\mathcal{I}_{p}(X, Y)$.

Let $1 \leq p<\infty$. The vector sequence $\left(x_{n}\right)$ in X is weakly p-summable if the scalar sequences $\left(\left\langle x^{*}, x_{n}\right\rangle\right)$ are in ℓ_{p} for every $x^{*} \in X^{*}$. We denote by $\ell_{p}^{\text {weak }}(X)$ the set of all such sequences in X. This is a Banach space under the norm

$$
\left\|\left(x_{n}\right)\right\|_{p}^{\text {weak }}=\sup \left\{\left(\sum_{n}\left|\left\langle x^{*}, x_{n}\right\rangle\right|^{p}\right)^{1 / p}: x^{*} \in X^{*},\left\|x^{*}\right\| \leq 1\right\}
$$

If $\left(x_{n}\right) \in \ell_{p}^{\text {weak }}(X)$ and P is a finite subset of $\mathbb{N},\left(x_{n}(P)\right)$ is the sequence defined by

$$
x_{n}(P)= \begin{cases}x_{n} & \text { if } n \in P \\ 0 & \text { if } n \notin P\end{cases}
$$

for all $n \in \mathbb{N}$. We denote by $\ell_{p}^{u}(X)$ the set of all sequences $\left(x_{n}\right)$ such that the net $\left(x_{n}(P)\right)_{P \in \mathcal{F}(\mathbb{N})}$ converges to $\left(x_{n}\right)$ in $\ell_{p}^{\text {weak }}(X)$, where $\mathcal{F}(\mathbb{N})$ is the set of all finite subsets of \mathbb{N}.

We write $\mathcal{R}\left(X_{p}^{u}, Y\right)$ (respectively $\left.\mathcal{R}_{c}\left(X_{p}^{u}, Y\right)\right)$ for the set of all operators T from X into Y such that for each sequence $\left(x_{n}\right) \in \ell_{p}^{u}(X)$, the sequence $\left(T x_{n}\right)$ belongs to $\mathcal{R}(Y)$ (respectively $\mathcal{R}_{c}(Y)$).

We denote by $\mathcal{R}_{b v}\left(X_{p}^{u}, Y\right)$ (respectively $\left.\mathcal{R}_{b v c}\left(X_{p}^{u}, Y\right)\right)$ the space of all operators T from X into Y such that for each sequences $\left(x_{n}\right) \in \ell_{p}^{u}(X)$, the sequence $\left(T x_{n}\right)$ belongs to $\mathcal{R}_{b v}(Y)$ (respectively $\mathcal{R}_{b v c}(Y)$).

For $1 \leq p \leq \infty$, an operator $T \in \mathcal{B}(X, Y)$ is said to be p-nuclear if it can be written in the form $T=\sum_{i=1}^{\infty} x_{i}^{*} \otimes y_{i}$, where $\left(x_{i}^{*}\right)$ in X^{*} and $\left(y_{i}\right)$ in Y satisfy $N_{p}\left(\left(x_{i}^{*}\right),\left(y_{i}\right)\right)<\infty$. Here

$$
N_{p}\left(\left(x_{i}^{*}\right),\left(y_{i}\right)\right)= \begin{cases}\left\|\left(x_{i}^{*}\right)\right\|_{1}^{\text {strong }} \cdot\left(\sup _{i}\left\|y_{i}\right\|\right) & \text { for } p=1 \\ \left\|\left(x_{i}^{*}\right)\right\|_{p}^{\text {strong }} \cdot\left\|\left(y_{i}\right)\right\|_{p^{\prime}}^{\text {weak }} & \text { for } 1<p<\infty \\ \left(\sup _{i}\left\|x_{i}\right\|\right) \cdot\left\|\left(y_{i}\right)\right\|_{1}^{\text {weak }} & \text { for } p=\infty\end{cases}
$$

Each such representation of T is called a p-nuclear representation. The set of all p-nuclear operators from X into Y is denoted by $\mathcal{N}_{p}(X, Y)$. With each $T \in \mathcal{N}_{p}(X, Y)$ we associate its p-nuclear norm, $\nu_{p}(T)=\inf N_{p}\left(\left(x_{i}^{*}\right),\left(y_{i}\right)\right)$, where the infimum is taken over all p-nuclear representations of T.

For $1 \leq p<\infty$, an operator $T \in \mathcal{B}(X, Y)$ is called absolutely p-summing if there exists a constant $C \geq 0$ such that for any finite subset $\left\{x_{i}\right\}_{i=1}^{n} \subset X$, we have

$$
\left(\sum_{i=1}^{n}\left\|T x_{i}\right\|^{p}\right)^{1 / p} \leq C \cdot \sup \left\{\left(\sum_{i=1}^{n}\left|\left\langle x^{*}, x_{n}\right\rangle\right|^{p}\right)^{1 / p}: x^{*} \in X^{*},\left\|x^{*}\right\| \leq 1\right\}
$$

The infimum of such C is the absolutely p-summing norm of T and denoted by $\pi_{p}(T)$. We write $\Pi_{p}(X, Y)$ for the set of all absolutely p-summing operators from X into Y.

Let $1 \leq q<\infty, 1 \leq p, r \leq \infty$ and $1 / q \leq 1 / p+1 / r$. An operator $T \in \mathcal{B}(X, Y)$ is called absolutely (q, p, r)-summing if there exists a constant $C \geq 0$ such that for all finite subsets $\left\{x_{i}\right\}_{i=1}^{n} \subset X$ and $\left\{y_{i}^{*}\right\}_{i=1}^{n} \subset Y^{*}$, we have

$$
\left(\sum_{i=1}^{n}\left|\left\langle T x_{i}, y_{i}^{*}\right\rangle\right|^{q}\right)^{1 / q} \leq C \cdot\left\|\left(x_{i}\right)\right\|_{p}^{\text {weak }} \cdot\left\|\left(y_{i}^{*}\right)\right\|_{r}^{\text {weak }}
$$

The infimum of such C is the absolutely (q, p, r)-summing norm of T and denoted by $\pi_{q, p, r}(T)$. We write $\Pi_{q, p, r}(X, Y)$ for the set of all absolutely (q, p, r) summing operators from X into Y.

A Banach space X has the Radon-Nikodym property with respect to (Ω, Σ, μ) if for each μ-continuous vector measure $G: \Sigma \rightarrow X$ of bounded variation there exists $g \in L_{1}(\mu, X)$ such that $G(E)=\int_{E} g d \mu$ for all $E \in \Sigma$. A Banach space X has the Radon-Nikodym property if X has the Radon-Nikodym property with respect to every finite mesure space.

We will say that a Banach space X satisfies Grothendieck's theorem if every operator from X into a Hilbert space is absolutely 1-summing.

3. Results

Let us start with the problem which gives a description of operators belonging to the space $\mathcal{R}_{b v}\left(X_{p}^{u}, Y\right)$ in terms of (1,p,1)-summing operators.
Theorem 1. Let $1<p<\infty$. Then the following statements about an operator $T: X \rightarrow Y$ are equivalent :
(i) $T \in \mathcal{R}_{b v c}\left(X_{p}^{u}, Y\right)$.
(ii) $T \in \mathcal{R}_{b v}\left(X_{p}^{u}, Y\right)$.
(iii) $T \in \Pi_{1, p, 1}(X, Y)$.

Proof. (i) \Rightarrow (ii). This is an easy consequence of the fact that $\mathcal{R}_{b v c}(Y) \subset$ $\mathcal{R}_{b v}(Y)$.
(ii) \Rightarrow (iii). Let us select any sequence $\left(x_{n}\right) \in \ell_{p}^{u}(X)$. The hypothesis (ii) leads us to have that given $\epsilon>0$ there exists a vector measure $\mu: \sum \rightarrow Y$ with
bounded variation for which $\left\{T x_{n}: n \in \mathbb{N}\right\} \subset \operatorname{rg} \mu$ and $\operatorname{tv}(\mu) \leq \epsilon+\left\|\left(T x_{n}\right)\right\|_{b v}$. Take any sequence $\left(y_{n}^{*}\right)$ in $\ell_{1}^{\text {weak }}\left(Y^{*}\right)$ and associate with it the map $S: Y \rightarrow \ell_{1}$ given by $S y=\left(\left\langle y_{n}^{*}, y\right\rangle\right)_{n}$. Consider the integration operator $I: L_{\infty}(|\mu|) \rightarrow Y$: $f \mapsto \int f d \mu$. Then $S \circ I \in \Pi_{1}\left(L_{\infty}(|\mu|), \ell_{1}\right)$. The Radon-Nikodym property of ℓ_{1} ensures that $S \circ I$ is nuclear and so is $(S \circ I)^{*}$. Note that
$(\cdot)\left\|(S \circ I)^{*} e_{n}\right\|=\sup \left\{\left|\left\langle(S \circ I)^{*} e_{n}, f\right\rangle\right|:\|f\|_{\infty} \leq 1\right\}$

$$
=\sup \left\{\left|\left\langle\int f d \mu, y_{n}^{*}\right\rangle\right|:\|f\|_{\infty} \leq 1\right\}=\sup \left\{\left|\int f d\left(y_{n}^{*} \circ \mu\right)\right|:\|f\|_{\infty} \leq 1\right\}
$$

Choose $A_{n} \in \sum$ such that $\mu\left(A_{n}\right)=T x_{n}$ for each $n \in \mathbb{N}$. Then it follows from (.) that

$$
\begin{aligned}
& \sum_{n}\left|\int \chi_{A_{n}} d\left(y_{n}^{*} \circ \mu\right)\right|=\sum_{n}\left|y_{n}^{*} \circ \mu\left(A_{n}\right)\right|=\sum_{n}\left|\left\langle y_{n}^{*}, T x_{n}\right\rangle\right| \\
& \leq \sum_{n}\left\|(S \circ I)^{*} e_{n}\right\|=\nu_{1}\left((S \circ I)^{*}\right) \leq \nu_{1}(S \circ I)=\pi_{1}(S \circ I) \\
&= \operatorname{tv}(S \circ \mu) \leq\|S\| \operatorname{tv}(\mu) \leq\|S\|\left(\epsilon+\left\|\left(T x_{n}\right)\right\|_{b v}\right)
\end{aligned}
$$

This permits us to create a continuous linear map $\phi: R_{b v}(T X) \rightarrow \mathbb{R}$ through $\phi\left(T x_{n}\right)=\sum_{n=1}^{\infty}\left\langle T x_{n}, y_{n}^{*}\right\rangle$ for all $\left(T x_{n}\right) \in R_{b v}(T X)$. Another appeal to the hypothesis (ii) establishes that the natural map $J: \ell_{p}^{u}(T X) \rightarrow R_{b v}(T X)$ is continuous. Hence the composition $\phi \circ J: \ell_{p}^{u}(T X) \rightarrow \mathbb{R}$ is continuous. Then the operator $u: T X \rightarrow \ell_{p^{\prime}}$ defined by $u(T x)=\left(\left\langle T x, y_{n}^{*}\right\rangle\right)_{n}$ is integral. The reflexivity of $\ell_{p^{\prime}}$ assures us that u is nuclear. The upshot of all this is that the map $\Phi: \mathcal{B}\left(Y, \ell_{1}\right) \rightarrow \mathcal{N}_{1}\left(T X, \ell_{p^{\prime}}\right):\left.S \mapsto i_{1 p^{\prime}} \circ S\right|_{T X}$ is continuous, where $i_{1 p^{\prime}}: \ell_{1} \rightarrow \ell_{p^{\prime}}$ is the formal inclusion map. Consequently for every $n \in \mathbb{N}$ there is a constant $C>0$ such that

$$
\begin{equation*}
\nu_{1}\left(\sum_{k=1}^{n} y_{k}^{*} \otimes e_{k}: T X \rightarrow \ell_{p^{\prime}}^{n}\right) \leq C \cdot \sup \left\{\sum_{k=1}^{n}\left|\left\langle y, y_{k}^{*}\right\rangle\right|:\|y\| \leq 1\right\} \tag{..}
\end{equation*}
$$

Now given $x_{1}, \cdots x_{n}$ in X and $y_{1}^{*}, \cdots y_{n}^{*}$ in Y^{*} we define operators $u: T X \rightarrow$ $\ell_{p^{\prime}}^{n}$ and $v: \ell_{p^{\prime}}^{n} \rightarrow Y$ via $u(T x)=\left(\left\langle T x, y_{i}^{*}\right\rangle\right)_{i=1}^{n}$ and $v\left(\left(a_{i}\right)_{i=1}^{n}\right)=\sum_{i=1}^{n} a_{i} T x_{i}$, respectively. We call on condition (..) to obtain the following :

$$
\begin{aligned}
& |\operatorname{tr}(u \circ v)|=\left|\sum_{i=1}^{n}\left\langle T x_{i}, y_{i}^{*}\right\rangle\right| \leq \sum_{i=1}^{n}\left|\left\langle T x_{i}, y_{i}^{*}\right\rangle\right| \\
& \quad \leq \imath_{1}(u \circ v)=\nu_{1}(u \circ v) \leq\|v\| \cdot \nu_{1}(u) \\
& \leq C \cdot \sup \left\{\left(\sum_{i=1}^{n}\left|\left\langle y^{*}, T x_{i}\right\rangle\right|^{p}\right)^{1 / p}:\|y\| \leq 1\right\} \cdot \sup \left\{\sum_{i=1}^{n}\left|\left\langle y, y_{i}^{*}\right\rangle\right|:\|y\| \leq 1\right\} \\
& \quad \leq C^{\prime} \cdot\left\|\left(x_{i}\right)_{i=1}^{n}\right\|_{p}^{\text {weak }} \cdot\left\|\left(y_{i}^{*}\right)_{i=1}^{n}\right\|_{1}^{\text {weak }}
\end{aligned}
$$

This signifies that $T \in \Pi_{1, p, 1}(X, Y)$.
(iii) \Rightarrow (i). Take a finite sequence $\left(y_{i}^{*}\right)_{i=1}^{n}$ in Y^{*} so that the linear map u : $Y \rightarrow \ell_{1}^{n}: y \mapsto\left(\left\langle y_{i}^{*}, y\right\rangle\right)_{i=1}^{n}$ is bounded. For every $n \in \mathbb{N}$, we define a linear map $U_{n}:\left(X^{n},\|\cdot\|_{p}^{\text {weak }}\right) \rightarrow \mathcal{N}_{1}\left(\ell_{1}^{n}, Y\right)$ by $U_{n}\left(x_{i}\right)_{1}^{n}=\sum_{i=1}^{n} e_{i} \otimes T x_{i}=v_{x}$. We take account of hypothesis (iii) to deduce that

$$
\begin{aligned}
\left|\operatorname{tr}\left(u \circ v_{x}\right)\right|= & \left|\sum_{i=1}^{n}\left\langle T x_{i}, y_{i}^{*}\right\rangle\right| \leq \sum_{i=1}^{n}\left|\left\langle T x_{i}, y_{i}^{*}\right\rangle\right| \\
& \leq C \cdot\left\|\left(x_{i}\right)_{i=1}^{n}\right\|_{p}^{\text {weak }} \cdot\left\|\left(y_{i}^{*}\right)_{i=1}^{n}\right\|_{1}^{\text {weak }}=C \cdot\left\|\left(x_{i}\right)_{i=1}^{n}\right\|_{p}^{\text {weak }} \cdot\|u\| .
\end{aligned}
$$

This validates the following :

$$
\nu_{1}\left(v_{x}\right)=\sup \left\{\left|\operatorname{tr}\left(u \circ v_{x}\right)\right|: u \in \mathcal{B}\left(Y, \ell_{1}^{n}\right),\|u\| \leq 1\right\} \leq C \cdot\left\|\left(x_{i}\right)_{i=1}^{n}\right\|_{p}^{\text {weak }}
$$

and hence $\left\|U_{n}\right\| \leq C$ for every $n \in \mathbb{N}$. This yields that a linear map U : $\left(X^{\mathbb{N}},\|\cdot\|_{p}^{\text {weak }}\right) \rightarrow \mathcal{N}\left(\ell_{1}, Y\right)$ defined by $U\left(x_{n}\right)=\sum_{n} e_{n} \otimes T x_{n}$, is continuous.

Now let us take any sequence $\left(x_{n}\right) \in \ell_{p}^{u}(X)$. Then the operator $S=$ $\sum_{n} e_{n} \otimes T x_{n} \in \mathcal{N}_{1}\left(\ell_{1}, Y\right)$. Fix $\epsilon>0$ and choose a nuclear representation $S=\sum_{n} \beta_{n} \otimes z_{n}$ such that $\sum_{n}\left\|\beta_{n}\right\|_{\ell_{\infty}}\left\|z_{n}\right\| \leq \nu_{1}(S)+\epsilon$. Writing $\alpha=\left(\alpha_{n}\right) \in \ell_{1}$ and $\beta_{k}=\left(\beta_{k, n}\right)_{n} \in \ell_{\infty}$, we see that $S \alpha=\sum_{k}\left\langle\alpha, \beta_{k}\right\rangle z_{k}=\sum_{n} \alpha_{n} T x_{n}=$ $\sum_{k}\left(\sum_{n} \alpha_{n} \beta_{k, n}\right) z_{k}$, and so $T x_{n}=\sum_{k} \frac{\beta_{k, n}}{\left\|\beta_{k}\right\|_{\infty}}\left\|\beta_{k}\right\|_{\infty} z_{k}$. Since $\sum_{k}\left\|\beta_{k}\right\|_{\infty} z_{k}$ is an absolutely convergent series in Y, it follows that $\left(T x_{n}\right) \in \mathcal{R}_{b v c}(Y)$. This forces that $T \in \mathcal{R}_{b v c}\left(X_{p}^{u}, Y\right)$.

Applying the above theorem we draw usable necessary condition which guarantees that every unconditionally weakly p-summable sequence in a Banach space X belongs to $\mathcal{R}_{b v c}(X)$.
Corollary 2. Let $1<p<\infty$. Suppose that $\ell_{p}^{u}(X) \subset \mathcal{R}_{b v c}(X)$. Then for every Banach space Y, we have $\Pi_{1}(X, Y) \subset \Pi_{1, p, 1}(X, Y)$.
Proof. Let us take any operator $T \in \Pi_{1}(X, Y)$. Then our hypothesis informs us that T takes each sequence $\left(x_{n}\right)$ in $\ell_{p}^{u}(X)$ into a sequence $\left(T x_{n}\right)$ in $\mathcal{R}_{b v}(Y)$. Theorem 1 steps in to conclude that $T \in \Pi_{1, p, 1}(X, Y)$. This gives us the desired inclusion.

Theorem 1 enables us to find a special kind of Banach space Y with the property that any operator $T \in \mathcal{B}(X, Y)$ belongs to $\mathcal{R}_{b v c}\left(X_{p}^{u}, Y\right)$.
Corollary 3. Let $1<p<\infty$ and let $T \in \mathcal{B}(X, Y)$. If Y^{*} satisfies Grothendieck's theorem, then $T \in \mathcal{R}_{b v c}\left(X_{p}^{u}, Y\right)$.
Proof. We select any operator $S \in \mathcal{B}\left(Y, \ell_{1}\right)$. As Y^{*} satisfies Grothendieck's theorem, we have that $S \in \Pi_{2}\left(Y, \ell_{1}\right)$ and hence $\left.S\right|_{T X} \in \Pi_{2}\left(T X, \ell_{1}\right)$. Taking note of the fact that the formal inclusion map $i_{1 p^{\prime}}: \ell_{1} \rightarrow \ell_{p^{\prime}}$ is 1-summing we derive that $\left.i_{1 p^{\prime}} \circ S\right|_{T X} \in \mathcal{N}_{1}\left(T X, \ell_{p^{\prime}}\right)$. Then we see from the proof of theorem 1 that $T \in \mathcal{R}_{b v c}\left(X_{p}^{u}, Y\right)$.

In the next theorem we establish the following characterization of operators belonging to the space $\mathcal{R}\left(X_{p}^{u}, Y\right)$.

Theorem 4. Let $1<p<\infty$ and let $T \in \mathcal{B}(X, Y)$. Then the following statements are equivalent :
(i) $T \in \mathcal{R}_{c}\left(X_{p}^{u}, Y\right)$.
(ii) $T \in \mathcal{R}\left(X_{p}^{u}, Y\right)$.
(iii) There exists a constant $C>0$ such that

$$
\sum_{i=1}^{n}\left|\left\langle T x_{i}, y_{i}^{*}\right\rangle\right| \leq C \cdot\left\|\left(x_{i}\right)_{i=1}^{n}\right\|_{p}^{\text {weak }} \cdot \pi_{1}\left(\sum_{i=1}^{n} y_{i}^{*} \otimes e_{i}: Y \rightarrow \ell_{1}^{n}\right)
$$

regardless of the choice of $n \in \mathbb{N}$, and the vectors $x_{1}, \cdots x_{n}$ in X and $y_{1}^{*}, \cdots y_{n}^{*}$ in Y^{*}.
Proof. (i) \Rightarrow (ii) is an immediate consequence of the fact that $\mathcal{R}_{c}(Y) \subset \mathcal{R}(Y)$.
(ii) \Rightarrow (iii). We select any sequence $\left(x_{n}\right) \in \ell_{p}^{u}(X)$. The hypothesis (ii) tells us that $\left(T x_{n}\right) \in \mathcal{R}(Y)$ and so given $\epsilon>0$ there exists a vector measure $\mu: \sum \rightarrow Y$ for which $\left\{T x_{n}: n \in \mathbb{N}\right\} \subset \operatorname{rg} \mu$ and $\operatorname{tsv}(\mu) \leq \epsilon+\left\|\left(T x_{n}\right)\right\|_{r}$. Let λ be a control measure for μ and let $I: L_{\infty}(\lambda) \rightarrow Y: f \mapsto \int f d \mu$ be the integration operator. Take a sequence $\left(y_{n}^{*}\right)$ in Y^{*} so that the linear map $S: Y \rightarrow \ell_{1}: y \mapsto\left(\left\langle y_{n}^{*}, y\right\rangle\right)_{n}$ is 1 -summing. Then $S \circ I: L_{\infty}(\lambda) \rightarrow \ell_{1}$ is 1 -summing. The Radon-Nikodym property of ℓ_{1} indicates that $S \circ I$ is nuclear and so is $(S \circ I)^{*}$. Notice that
$(\cdot) \quad\left\|(S \circ I)^{*} e_{n}\right\|=\sup \left\{\left|\left\langle(S \circ I)^{*} e_{n}, f\right\rangle\right|:\|f\|_{\infty} \leq 1\right\}$

$$
=\sup \left\{\left|\left\langle\int f d \mu, y_{n}^{*}\right\rangle\right|:\|f\|_{\infty} \leq 1\right\}=\sup \left\{\left|\int f d\left(y_{n}^{*} \circ \mu\right)\right|:\|f\|_{\infty} \leq 1\right\}
$$

Choose $A_{n} \in \sum$ so that $\mu\left(A_{n}\right)=T x_{n}$ for each $n \in \mathbb{N}$. We deduce from (\cdot) that

$$
\begin{aligned}
& \sum_{n}\left|\int \chi_{A_{n}} d\left(y_{n}^{*} \circ \mu\right)\right|=\sum_{n}\left|y_{n}^{*} \circ \mu\left(A_{n}\right)\right|=\sum_{n}\left|\left\langle y_{n}^{*}, T x_{n}\right\rangle\right| \\
& \leq \sum_{n}\left\|(S \circ I)^{*} e_{n}\right\|=\nu_{1}\left((S \circ I)^{*}\right) \leq \nu_{1}(S \circ I)=\pi_{1}(S \circ I) \\
&=\operatorname{tv}(S \circ \mu) \leq \pi_{1}(S) \operatorname{tsv}(\mu) \leq \pi_{1}(S)\left(\epsilon+\left\|\left(T x_{n}\right)\right\|_{r}\right)
\end{aligned}
$$

This allows us to define a continuous linear map $\phi: R(T X) \rightarrow \mathbb{R}$ via $\phi\left(T x_{n}\right)=$ $\sum_{n=1}^{\infty}\left\langle T x_{n}, y_{n}^{*}\right\rangle$ for all $\left(T x_{n}\right) \in R(T X)$. It takes another appeal to the hypothesis (ii) to reveal that the natural map $J: \ell_{p}^{u}(T X) \rightarrow R(T X)$ is continuous. Thus the composition $\phi \circ J: \ell_{p}^{u}(T X) \rightarrow \mathbb{R}$ is continuous. Then the operator $u: T X \rightarrow \ell_{p^{\prime}}$ defined by $u(T x)=\left(\left\langle T x, y_{n}^{*}\right\rangle\right)_{n}$ is integral. The reflexivity of $\ell_{p^{\prime}}$ guarantees that u is nuclear. The upshot of all this is that the map $\Phi: \Pi\left(Y, \ell_{1}\right) \rightarrow \mathcal{N}_{1}\left(T X, \ell_{p^{\prime}}\right):\left.S \mapsto i_{1 p^{\prime}} \circ S\right|_{T X}$ is continuous, where $i_{1 p^{\prime}}: \ell_{1} \rightarrow \ell_{p^{\prime}}$ is the formal inclusion map. Hence for every $n \in \mathbb{N}$ there is a constant $C>0$ such that

$$
\nu_{1}\left(\sum_{k=1}^{n} y_{k}^{*} \otimes e_{k}: T X \rightarrow \ell_{p^{\prime}}^{n}\right) \leq C \cdot \pi_{1}\left(\sum_{k=1}^{n} y_{k}^{*} \otimes e_{k}: Y \rightarrow \ell_{1}^{n}\right)
$$

Now given $x_{1}, \cdots x_{n}$ in X and $y_{1}^{*}, \cdots y_{n}^{*}$ in Y^{*} we define operators $u: T X \rightarrow$ $\ell_{p^{\prime}}^{n}$ and $v: \ell_{p^{\prime}}^{n} \rightarrow Y$ by $u(T x)=\left(\left\langle T x, y_{i}^{*}\right\rangle\right)_{i=1}^{n}$ and $v\left(\left(a_{i}\right)_{i=1}^{n}\right)=\sum_{i=1}^{n} a_{i} T x_{i}$, respectively. We make use of condition $(\cdot \cdot)$ to obtain the following :

$$
\begin{aligned}
& |\operatorname{tr}(u \circ v)|=\left|\sum_{i=1}^{n}\left\langle T x_{i}, y_{i}^{*}\right\rangle\right| \leq \sum_{i=1}^{n}\left|\left\langle T x_{i}, y_{i}^{*}\right\rangle\right| \\
& \quad \leq \imath_{1}(u \circ v)=\nu_{1}(u \circ v) \leq\|v\| \cdot \nu_{1}(u) \\
& \leq C \cdot \sup \left\{\left(\sum_{i=1}^{n}\left|\left\langle y^{*}, T x_{i}\right\rangle\right|^{p}\right)^{1 / p}:\left\|y^{*}\right\| \leq 1\right\} \cdot \pi_{1}\left(\sum_{i=1}^{n} y_{i}^{*} \otimes e_{i}: Y \rightarrow \ell_{1}^{n}\right) \\
& \\
& \leq C^{\prime} \cdot\left\|\left(x_{i}\right)_{i=1}^{n}\right\|_{p}^{\text {weak }} \cdot \pi_{1}\left(\sum_{i=1}^{n} y_{i}^{*} \otimes e_{i}: Y \rightarrow \ell_{1}^{n}\right) .
\end{aligned}
$$

(iii) \Rightarrow (i). Take a finite sequence $\left(y_{i}^{*}\right)_{i=1}^{n}$ in Y^{*} so that the linear map u : $Y \rightarrow \ell_{1}^{n}: y \mapsto\left(\left\langle y_{i}^{*}, y\right\rangle\right)_{i=1}^{n}$ is 1-summing. For every $n \in \mathbb{N}$, we define a linear $\operatorname{map} U_{n}:\left(X^{n},\|\cdot\|_{p}^{\text {weak }}\right) \rightarrow \mathcal{N}_{\infty}\left(\ell_{1}^{n}, Y\right)$ by $U_{n}\left(x_{i}\right)_{1}^{n}=\sum_{i=1}^{n} e_{i} \otimes T x_{i}=v_{x}$. As a consequence of hypothesis (iii) we have

$$
\begin{aligned}
& \left|\operatorname{tr}\left(u \circ v_{x}\right)\right|=\left|\sum_{i=1}^{n}\left\langle T x_{i}, y_{i}^{*}\right\rangle\right| \leq \sum_{i=1}^{n}\left|\left\langle T x_{i}, y_{i}^{*}\right\rangle\right| \\
& \quad \leq C \cdot\left\|\left(x_{i}\right)_{i=1}^{n}\right\|_{p}^{\text {weak }} \cdot \pi_{1}\left(\sum_{i=1}^{n} y_{i}^{*} \otimes e_{i}: Y \rightarrow \ell_{1}^{n}\right)=C \cdot\left\|\left(x_{i}\right)_{i=1}^{n}\right\|_{p}^{\text {weak }} \cdot \pi_{1}(u) .
\end{aligned}
$$

This validates the following :

$$
\nu_{\infty}\left(v_{x}\right)=\sup \left\{\left|\operatorname{tr}\left(u \circ v_{x}\right)\right|: u \in \Pi_{1}\left(Y, \ell_{1}^{n}\right), \pi_{1}(u) \leq 1\right\} \leq C \cdot\left\|\left(x_{i}\right)_{i=1}^{n}\right\|_{p}^{\text {weak }}
$$

and so $\left\|U_{n}\right\| \leq C$ for every $n \in \mathbb{N}$. This gives us that a linear map U : $\left(X^{\mathbb{N}},\|\cdot\|_{p}^{\text {weak }}\right) \rightarrow \mathcal{N}_{\infty}\left(\ell_{1}, Y\right)$ defined by $U\left(x_{n}\right)=\sum_{n} e_{n} \otimes T x_{n}$, is continuous.

Now let us take any sequence $\left(x_{n}\right) \in \ell_{p}^{u}(X)$. Then the operator $S=\sum_{n} e_{n} \otimes$ $T x_{n} \in \mathcal{N}_{\infty}\left(\ell_{1}, Y\right)$. Given $\epsilon>0$, we choose a ∞-nuclear representation $S=$ $\sum_{n} \beta_{n} \otimes z_{n}$ such that $\sup _{n}\left\|\beta_{n}\right\| \cdot\left\|\left(z_{n}\right)\right\|_{1}^{\text {weak }} \leq \nu_{\infty}(S)+\epsilon$. Writing $\alpha=\left(\alpha_{n}\right) \in \ell_{1}$ and $\beta_{k}=\left(\beta_{k, n}\right)_{n} \in \ell_{\infty}$, we get that $S \alpha=\sum_{k}\left\langle\alpha, \beta_{k}\right\rangle z_{k}=\sum_{n} \alpha_{n} T x_{n}=$ $\sum_{k}\left(\sum_{n} \alpha_{n} \beta_{k, n}\right) z_{k}$, and thus $T x_{n}=\sum_{k} \frac{\beta_{k, n}}{\left\|\beta_{k}\right\|_{\infty}}\left\|\beta_{k}\right\|_{\infty} z_{k}$. Since $\sum_{k}\left\|\beta_{k}\right\|_{\infty} z_{k}$ is an unconditionally convergent series in Y, we obtain that $\left(T x_{n}\right) \in \mathcal{R}_{c}(Y)$. This implies that $T \in \mathcal{R}_{c}\left(X_{p}^{u}, Y\right)$.

In the following we find usable sufficient condition which implies that every unconditionally weakly p-summable sequence in a Banach space X lies inside the range of an X-valued measure with relatively compact range.

Corollary 5. Let $1<p<\infty$. If $\Pi_{1}\left(X, \ell_{1}\right) \subset \Pi_{1, p, 1}\left(X, \ell_{1}\right)$, then $\ell_{p}^{u}(X) \subset$ $\mathcal{R}_{c}(X)$.

Proof. Let us take the operator $T=\sum_{n} x_{n}^{*} \otimes e_{n} \in \Pi_{1}\left(X, \ell_{1}\right)$. The hypothesis assures us that $T \in \Pi_{1, p, 1}\left(X, \ell_{1}\right)$ and hence for any finite collection of vectors $x_{1}, \cdots x_{n}$ in X we have

$$
\begin{aligned}
\sum_{i=1}^{n}\left|\left\langle x_{i}, x_{i}^{*}\right\rangle\right|=\sum_{i=1}^{n}\left|\left\langle x_{i}, T^{*} e_{i}\right\rangle\right|=\sum_{i=1}^{n} & \left|\left\langle T x_{i}, e_{i}\right\rangle\right| \\
\leq \pi_{1, p, 1}(T) \cdot\left\|\left(x_{i}\right)_{i=1}^{n}\right\|_{p}^{\text {weak }} \cdot & \sup \left\{\left(\sum_{i=1}^{n}\left|\left\langle e_{i}, y\right\rangle\right|: y \in B_{\ell_{1}}\right\}\right. \\
& \leq C^{\prime} \cdot\left\|\left(x_{i}\right)_{i=1}^{n}\right\|_{p}^{\text {weak }} \cdot\left\|\left(x_{i}^{*}\right)_{i=1}^{n}\right\|_{1}^{\text {weak }}
\end{aligned}
$$

We apply theorem 1 of [8] to produce that the operator $\sum_{n} x_{n}^{*} \otimes e_{n} \in \mathcal{N}_{1}\left(X, \ell_{p^{\prime}}\right)$. From the proof of theorem 4 we see that $\ell_{p}^{u}(X) \subset \mathcal{R}_{c}(X)$.

Apply theorem 4 we find a special kind of Banach space Y with the property that any operator $T \in \mathcal{B}(X, Y)$ belongs to $\mathcal{R}_{c}\left(X_{p}^{u}, Y\right)$.

Corollary 6. Let $1<p<\infty$ and let $T \in \mathcal{B}(X, Y)$. Suppose that Y^{*} is isomorphic to a subspace of $L_{1}(\mu)$ for some measure μ. Then $T \in \mathcal{R}_{c}\left(X_{p}^{u}, Y\right)$.
Proof. We select any operator $S \in \Pi_{1}\left(Y, \ell_{1}\right)$. The hypothesis enables us to invoke theorem 3.6 of $[6]$ to infer that $S \in \mathcal{N}_{1}\left(Y, \ell_{1}\right)$ and so $\left.i_{1 p^{\prime}} \circ S\right|_{T X} \in$ $\mathcal{N}_{1}\left(T X, \ell_{p^{\prime}}\right)$, where $i_{1 p^{\prime}}: \ell_{1} \rightarrow \ell_{p^{\prime}}$ is the formal inclusion map. From the proof of theorem 4 we know that $T \in \mathcal{R}_{c}\left(X_{p}^{u}, Y\right)$.

The next corollary shows that theorem 1 is equivalent to theorem 4 under some restrictions to the underlying Banach space.

Corollary 7. Let $1<p<\infty$. Suppose that Y and Y^{*} satisfy Grothendieck's theorem. Then the following statements about an operator $T: X \rightarrow Y$ are equivalent :
(i) $T \in \mathcal{R}_{b v c}\left(X_{p}^{u}, Y\right)$.
(ii) $T \in \mathcal{R}_{b v}\left(X_{p}^{u}, Y\right)$.
(iii) $T \in \mathcal{R}\left(X_{p}^{u}, Y\right)$.
(iv) $T \in \mathcal{R}_{c}\left(X_{p}^{u}, Y\right)$.
(v) $T \in \Pi_{1, p, 1}(X, Y)$.

Proof. The equivalence of (i),(ii) and (v) is covered by theorem 1. The implication $($ ii $) \Rightarrow$ (iii) is trivial. In theorem 4 we showed that (iii) \Leftrightarrow (iv). To show that (iv) implies (v), we consider the operator $S=\sum_{n} y_{n}^{*} \otimes e_{n} \in \mathcal{B}\left(Y, \ell_{1}\right)$. As Y^{*} satisfies Grothendieck's theorem, we have that $S \in \Pi_{2}\left(Y, \ell_{1}\right)$ and hence there exists a factorization $S: Y \xrightarrow{v} \ell_{2} \xrightarrow{u} \ell_{1}$. Since Y satisfies Grothendieck's theorem, it follows that $v \in \Pi_{1}\left(Y, \ell_{2}\right)$ and so $S \in \Pi_{1}\left(Y, \ell_{1}\right)$. This forces that there is a constant C such that

$$
\begin{equation*}
\pi_{1}(S) \leq C\|S\| \tag{*}
\end{equation*}
$$

On account of hypothesis (iv), we take account of theorem 4 to deduce that there exists a constant $C>0$ such that no matter how we select finitely many vectors $x_{1}, \cdots x_{n}$ from X and $y_{1}^{*}, \cdots y_{n}^{*}$ from Y^{*}, we have

$$
\sum_{i=1}^{n}\left|\left\langle T x_{i}, y_{i}^{*}\right\rangle\right| \leq C \cdot\left\|\left(x_{i}\right)_{i=1}^{n}\right\|_{p}^{\text {weak }} \cdot \pi_{1}\left(\sum_{i=1}^{n} y_{i}^{*} \otimes e_{i}: Y \rightarrow \ell_{1}^{n}\right)
$$

Then it follows from condition (*) that

$$
\sum_{i=1}^{n}\left|\left\langle T x_{i}, y_{i}^{*}\right\rangle\right| \leq C^{\prime} \cdot\left\|\left(x_{i}\right)_{i=1}^{n}\right\|_{p}^{\text {weak }} \cdot\left\|\left(y_{i}^{*}\right)_{i=1}^{n}\right\|_{1}^{\text {weak }}
$$

This means that $T \in \Pi_{1, p, 1}(X, Y)$.
Now we pass on to the study of sequences lying in the range of a vector measure with relatively compact range.
Proposition 8. Let $1<p<\infty$. The following statements are equivalent :
(i) $\mathcal{I}_{p}\left(X, \ell_{1}\right) \subset \Pi_{1}\left(X, \ell_{1}\right)$.
(ii) If $\left(x_{n}\right) \in \mathcal{R}_{c}(X)$, then the operator $\sum_{n} e_{n} \otimes x_{n} \in \Pi_{p^{\prime}}\left(\ell_{1}, X\right)$.

Proof. (i) \Rightarrow (ii). Take any sequence $\left(x_{n}\right) \in \mathcal{R}_{c}(X)$. An appeal to proposition 1.4 of [6] yields that given $\epsilon>0$ there exists an unconditionally convergent series $\sum_{k=1}^{\infty} y_{k}$ in X for which $x_{n}=\sum_{k=1}^{\infty} \alpha_{k} y_{k}$ and $\left\|\left(y_{k}\right)\right\|_{1}^{\text {weak }}<\epsilon+\left\|\left(x_{n}\right)\right\|_{r c}$, where $\left\|\left(\alpha_{k}\right)\right\|_{\infty} \leq 1$. The hypothesis (i) guarantees the existence of a constant $C>0$ such that $\pi_{1}(T) \leq C \cdot \imath_{p}(T)$ for any operator $T=\sum_{n} x_{n}^{*} \otimes e_{n} \in \mathcal{I}_{p}\left(X, \ell_{1}\right)$. Then we have

$$
\begin{aligned}
\sum_{n} \mid\left\langle x_{n}, x_{n}^{*}\right\rangle & =\sum_{n}\left|\left\langle\sum_{k} \alpha_{k} y_{k}, x_{n}^{*}\right\rangle\right| \leq \sum_{k} \sum_{n}\left|\left\langle y_{k}, x_{n}^{*}\right\rangle\right| \\
& =\sum_{k}\left\|T y_{k}\right\| \leq \pi_{1}(T) \cdot\left\|\left(y_{k}\right)\right\|_{1}^{\text {weak }} \leq C \cdot \imath_{p}(T) \cdot\left(\epsilon+\left\|\left(x_{n}\right)\right\|_{r c}\right) .
\end{aligned}
$$

The upshot of all this is that the linear map $\Phi: \mathcal{I}_{p}\left(X, \ell_{1}\right) \rightarrow \ell_{1}: \sum_{n} x_{n}^{*} \otimes e_{n} \mapsto$ $\left(\left\langle x_{n}, x_{n}^{*}\right\rangle\right)_{n}$ is continuous.

Given $T=\sum_{n} x_{n}^{*} \otimes e_{n}$ and $\left(\beta_{n}\right) \in \ell_{\infty}$, we use the trace duality to obtain the following :

$$
\begin{aligned}
& \left\langle\Phi^{*}\left(\beta_{n}\right), T\right\rangle=\left\langle\left(\beta_{n}\right), \Phi(T)\right\rangle=\sum_{n}\left\langle\beta_{n} x_{n}, x_{n}^{*}\right\rangle=\operatorname{tr}\left(T \circ \Phi^{*}\left(\beta_{n}\right)\right) \\
& \sum_{k}\left\langle T \circ \Phi^{*}\left(\beta_{n}\right) e_{k}, e_{k}\right\rangle=\sum_{k}\left\langle\sum_{n}\left\langle x_{n}^{*}, \Phi^{*}\left(\beta_{n}\right) e_{k}\right\rangle e_{n}, e_{k}\right\rangle \\
& =\sum_{n}\left\langle x_{n}^{*}, \Phi^{*}\left(\beta_{n}\right) e_{n}\right\rangle
\end{aligned}
$$

Therefore $\Phi^{*}: \ell_{\infty} \rightarrow \Pi_{p^{\prime}}\left(\ell_{1}, X\right):\left(\beta_{n}\right) \mapsto \sum_{n} e_{n} \otimes \beta_{n} x_{n}$. Then the operator $\sum_{n} e_{n} \otimes x_{n} \in \Pi_{p^{\prime}}\left(\ell_{1}, X\right)$.
$($ ii $) \Rightarrow\left(\right.$ i). From the proof of theorem 4 we see that if the operator $S=\sum_{n} e_{n} \otimes$ $x_{n} \in \mathcal{N}_{\infty}\left(\ell_{1}, X\right)$, then $\left(x_{n}\right) \in \mathcal{R}_{c}(X)$ and $\left\|\left(x_{n}\right)\right\|_{r c}<\nu_{\infty}(S)$.

Now let us select any sequence $\left(x_{n}\right) \in \mathcal{R}_{c}(X)$. We use this sequence to define an operator $T: \ell_{1} \rightarrow X$ via $T\left(\alpha_{n}\right)=\sum_{n} \alpha_{n} x_{n}$. It takes another appeal to proposition 1.4 of [6] to establish that given $\epsilon>0$ there exists an unconditionally convergent series $\sum_{k} y_{k}$ in X so that $x_{n}=\sum_{k} \delta_{k, n} y_{k}$ and $\left\|\left(y_{k}\right)\right\|_{1}^{\text {weak }}<\epsilon+\left\|\left(x_{n}\right)\right\|_{r c}$, where $\left\|\left(\delta_{k, n}\right)_{k}\right\|_{\infty} \leq 1$. We exploit the fact that there exist a weakly summable sequence $\left(z_{k}\right)$ in X and a sequence $\left(\lambda_{k}\right)$ in $B_{C_{0}}$ for which $y_{k}=\lambda_{k} z_{k}$ and $\left\|\left(z_{k}\right)\right\|_{1}^{\text {weak }} \leq \epsilon+\left\|\left(y_{k}\right)\right\|_{1}^{\text {weak }}$ to see that $T \in \mathcal{N}_{\infty}\left(\ell_{1}, X\right)$. In fact $T\left(\alpha_{n}\right)=\sum_{n} \alpha_{n} \sum_{k} \delta_{k, n} y_{k}=\sum_{k} \sum_{n} \alpha_{n} \delta_{k, n} \lambda_{k} z_{k}=\sum_{k}\left\langle\alpha, \lambda_{k} \delta_{k}\right\rangle z_{k}$, where $\delta_{k}=\left(\delta_{k, n}\right)_{n}$. Thus $\nu_{\infty}(T) \leq \sup _{k}\left\|\lambda_{k} \delta_{k}\right\|_{\infty} \cdot\left\|\left(z_{k}\right)\right\|_{1}^{\text {weak }} \leq \epsilon+\left\|\left(y_{k}\right)\right\|_{1}^{\text {weak }}<$ $2 \epsilon+\left\|\left(x_{n}\right)\right\|_{r c}$. Then the hypothesis (ii) leads us to have that $\mathcal{N}_{\infty}\left(\ell_{1}, X\right) \subset$ $\Pi_{p^{\prime}}\left(\ell_{1}, X\right)$. Using the trace duality we draw that $\mathcal{I}_{p}\left(X, \ell_{1}\right) \subset \Pi_{1}\left(X, \ell_{1}\right)$.

References

[1] R. Anantharaman and K. Garg, The range of a vector measure, Bull. Math. Soc. Sci. Math. R. S. Roumanie 22 (1978), 115-132.
[2] R. Anantharaman and J. Diestel, Sequences in the range of a vector measure Anna. Soc. Math. Polon. Ser. I Comment. Math. 30 (1991), 221-235.
[3] J. Diestel and C. Seifert, An averaging property of the range of a vector measure Bull. Amer. Math. Soc. 82 (1976), 907-909.
[4] J. Diestel and J. J. Uhl, Jr., Vector measures, AMS Surveys; no. 15, Providence, RI, 1977.
[5] J. Diestel, H. Jarchow and A. Tonge, Absolutely summing operators, Cambridge University Press, 1995.
[6] C. Piñeiro and L. Rodriguez-Piazza, Banach spaces in which every compact lies inside the range of a vector measure, Proc. Amer. Math. Soc. 114 (1992), 505-517.
[7] C. Piñeiro, Operators on Banach spaces taking compact sets inside ranges of vector measures, Proc. Amer. Math. Soc. 116 (1992), 1031-1040 .
[8] C. Piñeiro, Banach spaces in which every p-weakly summable sequences lies in the range of a vector measure, Proc. Amer. Math. Soc. 124 (1996), 2013-2020.
[9] C. Piñeiro, On p-summable sequences in the range of a vector measure, Proc. Amer. Math. Soc. 125 (1997), 2073-2082.
[10] L. Rodriguez-Piazza, The range of a vector measure determines its total variation, Proc. Amer. Math. Soc. 111 (1991), 205-214.
[11] G. Thomas, The Lebesgue-Nikodym theorem for vector-valued Radon measures, Mem. Amer. Math. Soc. No. 139, 1974.

Department of Mathematics, Dongguk University, 3 Ga 26 Phildong, Chungku, SEoul 100-715, KOREA

E-mail address: hsong@dongguk.edu

