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CHARACTERIZATION OF OPERATORS TAKING
P-SUMMABLE SEQUENCES INTO SEQUENCES IN THE

RANGE OF A VECTOR MEASURE

Hi Ja Song

Abstract. We characterize operators between Banach spaces sending
unconditionally weakly p-summable sequences into sequences that lie in
the range of a vector measure of bounded variation. Further, we de-

scribe operators between Banach spaces taking unconditionally weakly
p-summable sequences into sequences that lie in the range of a vector
measure.

1. Introduction

The intriguing connection between the geometry of subsets of Banach spaces
and vector measure theory is not confined to Radon-Nikodym considerations.
Questions regarding the finer structure of the range of a vector measure have
found interest since Liapounoff’s discovery of his everintriguing convexity the-
orem which states that the range of a nonatomic vector measure with values
in a finite dimensional space is compact and convex. The infinite dimensional
version of Liapounoff’s theorem remained resistant to analysis for a long time.
It is an important fact, first established by Bartle, Dunford and Schwartz in
the early fifties, that the range of a vector measure is always relatively weakly
compact.

Among the relatively weakly compact subsets of Banach spaces, those that
are the range of a vector measure occupy a special place ; a remarkable simi-
larity to the relatively norm compact sets is evidenced. For instance, Diestel
and Seifert [3] proved that any sequence in the range of a vector measure ad-
mits a subsequence with norm convergent arithmetic means, a phenomenon
not shared by all weakly compact sets.

Any intuition gained by noting the similarities between relatively norm com-
pact sets and sets arising as ranges of vector measures must be tempered by
the fact that the closed unit ball of an infinite dimensional Banach space can
be the range of a vector measure.
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Anantharaman and Garg [1] proved that the closed unit ball of a Banach
space X is the range of a vector measure if and only if the dual of a Banach
space X is isometrically isomorphic to a reflexive subspace of L1(µ) for some
probability measure µ.

Anantharaman and Diestel [2] found that every weakly compact subset of
BD1 (the separable L∞ space of Bourgain and Delbaen that has the weakly
compact extension property) lies inside the range of a BD1-valued measure.
They also proved that every weakly 2-summable sequence in a Banach space
X lies inside the range of an X-valued measure.

Piñeiro and Rodriguez-Piazza [6] showed that the compact subset of a Ba-
nach space X lies inside the range of an X-valued measure if and only if the
dual of a Banach space X can be embedded into an L1(µ)-space for a suitable
measure µ.

It is an easy consequence of the celebrated Dvoretsky-Rogers theorem that
given an infinite dimensional Banach space X, there is an X-valued measure
that does not have finite variation [11]. Thus the question arose : Which
Banach spaces X have the property that every compact subset of X lies inside
the range of an X-valued measure of bounded variation ? This was settled by
Piñeiro and Rodriguez-Piazza [6]: Only finite-dimensional Banach spaces have
this property.

Piñeiro [8] characterized Banach spaces X having the property that every
weakly p-summable sequence in X lies inside the range of an X∗∗-valued mea-
sure of bounded variation provided that 1 < p < ∞.

Piñeiro [9] also gave descriptions of Banach spaces X for which every un-
conditionally weakly p-summable sequence in X lies inside the range of an
X-valued measure when p > 2.

In this paper we deal with the above mentioned problems in the framework
of operators acting between Banach spaces.

We introduce the space R(Xu
p , Y ) of all operators from a Banach space X

into a Banach space Y taking unconditionally weakly p-summable sequences
in X into sequences that lie in the range of a Y -valued measure. In addition,
we define Rbv(Xu

p , Y ) as the set of all operators from a Banach space X into
a Banach space Y sending unconditionally weakly p-summable sequences in
X into sequences that lie in the range of a Y -valued measure with bounded
variation.

We first provide a description of operators belonging to the space Rbv(Xu
p , Y )

in terms of (1,p,1)-summing operators.
Next we give usable necessary and sufficient conditions for an operator to

belong to the space R(Xu
p , Y ).

Finally we turn to the consideration of sequences in the range of a vector
measure and give usable necessary condition for a sequence in a Banach space
X to lie in the range of an X-valued measure with relatively compact range
under the hypothesis that every p-integral operator from X to ℓ1 is 1-summing
when 1 < p < ∞.
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2. Definitions and Notations

We present some of the definitions and notation to be used. Throughout
this paper X and Y denote Banach spaces.

A function µ from a σ-field Σ of subsets of a set Ω to a Banach space X is
called a countably additive vector measure if µ(∪∞

n=1En) =
∑∞

n=1 µ(En) in the
norm topology of X for all sequences (En) of pairwise disjoint members of Σ
such that ∪∞

n=1En ∈ Σ. The range of µ will be denoted by rg µ. The variation
of µ is the extended nonnegative function |µ| whose value on a set E ∈ Σ is
given by |µ|(E) = supπ

∑
A∈π ∥µ(A)∥, where the supremum is taken over all

partitions π of E into a finite number of pairwise disjoint members of Σ. If
|µ|(Ω) = tv(µ) < ∞ then µ will be called a measure of bounded variation. The
semivariation of µ is the extended nonnegative function ∥µ∥ whose value on a
set E ∈ Σ is given by ∥µ∥(E) = sup{|x∗ ◦ µ|(E) : x∗ ∈ X∗, ∥x∗∥ ≤ 1}, where
|x∗ ◦µ| is the variation of the real-valued measure x∗ ◦µ. If ∥µ∥(Ω) = tsv(µ) <
∞, then µ will be called a measure of bounded semivariation.

Notation. (1) The dual of a Banach space X is denoted by X∗.
(2) The closed unit ball of a Banach space X is denoted by

BX .
(3) The dual operator of an operator T is denoted by T ∗.
(4) B(X,Y ) denotes the set of all bounded linear operators

from X into Y .
(5) For 1 < p < ∞, the conjugate exponent of p is denoted

by p′, i.e. 1/p + 1/p′ = 1.

The space R(X) is defined to consist of all sequences (xn) in X such that
there exists an X-valued measure µ satisfying {xn : n ∈ N} ⊂ rg µ. For each
(xn) ∈ R(X), define ∥(xn)∥r = inf tsv(µ), where the infimum is taken over all
vector measures µ as above.

The space Rc(X) consists of all sequences in X that lie inside the range
of an X-valued measure with relatively compact range. If (xn) belongs to
Rc(X) then proposition 1.4 of [6] ensures that there exists an unconditionally
convergent series

∑∞
k=1 yk in X for which {xn : n ∈ N} ⊂ {

∑∞
k=1 αkyk :

(αk) ∈ ℓ∞, ∥(αk)∥∞ ≤ 1}. For each (xn) ∈ Rc(X), define ∥(xn)∥rc =
inf sup{

∑∞
k=1 |⟨x∗, yk⟩| : x∗ ∈ BX∗}, where the infimum is taken over all un-

conditionally convergent series
∑∞

k=1 yk of the kind described above.
The space Rbv(X) is defined to consist of all sequences (xn) in X such

that there exists an X-valued measure µ with bounded variation satisfying
{xn : n ∈ N} ⊂ rg µ. For each (xn) ∈ Rbv(X), set ∥(xn)∥bv = inf tv(µ), where
the infimum is taken over all vector measures µ as above.

The space Rbvc(X) consists of all sequences (xn) in X such that there ex-
ists an absolutely convergent series

∑∞
k=1 yk in X satisfying {xn : n ∈ N} ⊂

{
∑∞

k=1 αkyk : (αk) ∈ ℓ∞, ∥(αk)∥∞ ≤ 1}. For each (xn) ∈ Rbvc(X), let
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∥(xn)∥bvc = inf
∑∞

k=1 ∥yk∥, where the infimum is extended over all such ab-
solutely convergent series

∑∞
k=1 yk.

Let [A, α] be a Banach operator ideal. We say that the operator T : X → Y
belongs to A∗(X, Y ) provided there is a constant C ≥ 0 such that regardless of
the finite dimensional normed spaces E and F and operators a ∈ B(E, X), b ∈
B(Y, F ) and U ∈ B(F, E), the composition E

a−→ X
T−→ Y

b−→ F
U−→ E

satisfies | tr(UbTa)| ≤ C · ∥a∥ · ∥b∥ · α(U). The collection of all such C has an
infimum, which is denoted by α∗(T ). The Banach operator ideal [A∗, α∗] is
called the adjoint operator ideal of [A, α].

For 1 ≤ p ≤ ∞, an operator T ∈ B(X, Y ) is called p-integral if there are a
probability measure µ and operators A ∈ B(Lp(µ), Y ∗∗) and B ∈ B(X,L∞(µ))
such that κY ◦ T = A ◦ ip ◦ B, where ip : L∞(µ) → Lp(µ) is the formal
identity. The p-integral norm of T is defined by ıp(T ) = inf{∥A∥∥B∥}, where
the infimum is extended over all measures µ and operators A and B as above.
The collection of all p-integral operators from X into Y is denoted by Ip(X, Y ).

Let 1 ≤ p < ∞. The vector sequence (xn) in X is weakly p-summable if the
scalar sequences (⟨x∗, xn⟩) are in ℓp for every x∗ ∈ X∗. We denote by ℓweak

p (X)
the set of all such sequences in X. This is a Banach space under the norm

∥(xn)∥weak
p = sup

{
(
∑

n

|⟨x∗, xn⟩|p)1/p : x∗ ∈ X∗, ∥x∗∥ ≤ 1
}
.

If (xn) ∈ ℓweak
p (X) and P is a finite subset of N, (xn(P )) is the sequence

defined by

xn(P ) =

{
xn if n ∈ P,

0 if n /∈ P

for all n ∈ N. We denote by ℓu
p(X) the set of all sequences (xn) such that the

net (xn(P ))P∈F(N) converges to (xn) in ℓweak
p (X), where F(N) is the set of all

finite subsets of N.
We write R(Xu

p , Y ) (respectively Rc(Xu
p , Y )) for the set of all operators T

from X into Y such that for each sequence (xn) ∈ ℓu
p(X), the sequence (Txn)

belongs to R(Y ) (respectively Rc(Y )).
We denote by Rbv(Xu

p , Y ) (respectively Rbvc(Xu
p , Y )) the space of all opera-

tors T from X into Y such that for each sequences (xn) ∈ ℓu
p(X), the sequence

(Txn) belongs to Rbv(Y ) (respectively Rbvc(Y )).
For 1 ≤ p ≤ ∞, an operator T ∈ B(X, Y ) is said to be p-nuclear if it can be

written in the form T =
∑∞

i=1 x∗
i ⊗ yi, where (x∗

i ) in X∗ and (yi) in Y satisfy
Np((x∗

i ), (yi)) < ∞. Here

Np((x∗
i ), (yi)) =


∥(x∗

i )∥
strong
1 · (supi ∥yi∥) for p = 1,

∥(x∗
i )∥strong

p · ∥(yi)∥weak
p′ for 1 < p < ∞,

(supi ∥xi∥) · ∥(yi)∥weak
1 for p = ∞.
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Each such representation of T is called a p-nuclear representation. The set
of all p-nuclear operators from X into Y is denoted by Np(X, Y ). With each
T ∈ Np(X, Y ) we associate its p-nuclear norm, νp(T ) = inf Np((x∗

i ), (yi)),
where the infimum is taken over all p-nuclear representations of T .

For 1 ≤ p < ∞, an operator T ∈ B(X,Y ) is called absolutely p-summing if
there exists a constant C ≥ 0 such that for any finite subset {xi}n

i=1 ⊂ X, we
have(

n∑
i=1

∥Txi∥p

)1/p

≤ C · sup
{
(

n∑
i=1

|⟨x∗, xn⟩|p)1/p : x∗ ∈ X∗, ∥x∗∥ ≤ 1
}
.

The infimum of such C is the absolutely p-summing norm of T and denoted by
πp(T ). We write Πp(X, Y ) for the set of all absolutely p-summing operators
from X into Y .

Let 1 ≤ q < ∞, 1 ≤ p, r ≤ ∞ and 1/q ≤ 1/p+1/r. An operator T ∈ B(X, Y )
is called absolutely (q, p, r)-summing if there exists a constant C ≥ 0 such that
for all finite subsets {xi}n

i=1 ⊂ X and {y∗
i }n

i=1 ⊂ Y ∗, we have(
n∑

i=1

|⟨Txi, y
∗
i ⟩|q

)1/q

≤ C · ∥(xi)∥weak
p · ∥(y∗

i )∥weak
r .

The infimum of such C is the absolutely (q, p, r)-summing norm of T and
denoted by πq,p,r(T ). We write Πq,p,r(X, Y ) for the set of all absolutely (q, p, r)-
summing operators from X into Y .

A Banach space X has the Radon-Nikodym property with respect to (Ω, Σ, µ)
if for each µ-continuous vector measure G : Σ → X of bounded variation there
exists g ∈ L1(µ,X) such that G(E) =

∫
E

g dµ for all E ∈ Σ. A Banach space
X has the Radon-Nikodym property if X has the Radon-Nikodym property
with respect to every finite mesure space.

We will say that a Banach space X satisfies Grothendieck’s theorem if every
operator from X into a Hilbert space is absolutely 1-summing.

3. Results

Let us start with the problem which gives a description of operators belong-
ing to the space Rbv(Xu

p , Y ) in terms of (1,p,1)-summing operators.

Theorem 1. Let 1 < p < ∞. Then the following statements about an operator
T : X → Y are equivalent :

(i) T ∈ Rbvc(Xu
p , Y ).

(ii) T ∈ Rbv(Xu
p , Y ).

(iii) T ∈ Π1,p,1(X, Y ).

Proof. (i)⇒(ii). This is an easy consequence of the fact that Rbvc(Y ) ⊂
Rbv(Y ).

(ii)⇒(iii). Let us select any sequence (xn) ∈ ℓu
p(X). The hypothesis (ii)

leads us to have that given ϵ > 0 there exists a vector measure µ :
∑

→ Y with
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bounded variation for which {Txn : n ∈ N} ⊂ rg µ and tv(µ) ≤ ϵ + ∥(Txn)∥bv.
Take any sequence (y∗

n) in ℓweak
1 (Y ∗) and associate with it the map S : Y → ℓ1

given by Sy = (⟨y∗
n, y⟩)n. Consider the integration operator I : L∞(|µ|) → Y :

f 7→
∫

fdµ . Then S ◦ I ∈ Π1(L∞(|µ|), ℓ1). The Radon-Nikodym property of
ℓ1 ensures that S ◦ I is nuclear and so is (S ◦ I)∗. Note that

(·) ∥(S ◦ I)∗en∥ = sup{|⟨(S ◦ I)∗en, f⟩| : ∥f∥∞ ≤ 1}

= sup{|⟨
∫

fdµ, y∗
n⟩| : ∥f∥∞ ≤ 1} = sup{|

∫
fd(y∗

n ◦ µ)| : ∥f∥∞ ≤ 1}.

Choose An ∈
∑

such that µ(An) = Txn for each n ∈ N. Then it follows from
(·) that∑

n

|
∫

χAnd(y∗
n ◦ µ)| =

∑
n

|y∗
n ◦ µ(An)| =

∑
n

|⟨y∗
n, Txn⟩|

≤
∑

n

∥(S ◦ I)∗en∥ = ν1((S ◦ I)∗) ≤ ν1(S ◦ I) = π1(S ◦ I)

= tv(S ◦ µ) ≤ ∥S∥ tv(µ) ≤ ∥S∥(ϵ + ∥(Txn)∥bv).

This permits us to create a continuous linear map ϕ : Rbv(TX) → R through
ϕ(Txn) =

∑∞
n=1⟨Txn, y∗

n⟩ for all (Txn) ∈ Rbv(TX). Another appeal to the
hypothesis (ii) establishes that the natural map J : ℓu

p(TX) → Rbv(TX) is
continuous. Hence the composition ϕ ◦ J : ℓu

p(TX) → R is continuous. Then
the operator u : TX → ℓp′ defined by u(Tx) = (⟨Tx, y∗

n⟩)n is integral. The
reflexivity of ℓp′ assures us that u is nuclear. The upshot of all this is that
the map Φ : B(Y, ℓ1) → N1(TX, ℓp′) : S 7→ i1p′ ◦ S|TX is continuous, where
i1p′ : ℓ1 → ℓp′ is the formal inclusion map. Consequently for every n ∈ N there
is a constant C > 0 such that

(··) ν1(
n∑

k=1

y∗
k ⊗ ek : TX → ℓn

p′) ≤ C · sup{
n∑

k=1

|⟨y, y∗
k⟩| : ∥y∥ ≤ 1}.

Now given x1, · · ·xn in X and y∗
1 , · · · y∗

n in Y ∗ we define operators u : TX →
ℓn
p′ and v : ℓn

p′ → Y via u(Tx) = (⟨Tx, y∗
i ⟩)n

i=1 and v((ai)n
i=1) =

∑n
i=1 aiTxi,

respectively. We call on condition (··) to obtain the following :

| tr(u ◦ v)| = |
n∑

i=1

⟨Txi, y
∗
i ⟩| ≤

n∑
i=1

|⟨Txi, y
∗
i ⟩|

≤ ı1(u ◦ v) = ν1(u ◦ v) ≤ ∥v∥ · ν1(u)

≤ C · sup{(
n∑

i=1

|⟨y∗, Txi⟩|p)1/p : ∥y∥ ≤ 1} · sup{
n∑

i=1

|⟨y, y∗
i ⟩| : ∥y∥ ≤ 1}

≤ C ′ · ∥(xi)n
i=1∥weak

p · ∥(y∗
i )n

i=1∥weak
1 .

This signifies that T ∈ Π1,p,1(X, Y ).
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(iii)⇒(i). Take a finite sequence (y∗
i )n

i=1 in Y ∗ so that the linear map u :
Y → ℓn

1 : y 7→ (⟨y∗
i , y⟩)n

i=1 is bounded. For every n ∈ N, we define a linear map
Un : (Xn, ∥ · ∥weak

p ) → N1(ℓn
1 , Y ) by Un(xi)n

1 =
∑n

i=1 ei ⊗ Txi = υx. We take
account of hypothesis (iii) to deduce that

| tr(u ◦ υx)| = |
n∑

i=1

⟨Txi, y
∗
i ⟩| ≤

n∑
i=1

|⟨Txi, y
∗
i ⟩|

≤ C · ∥(xi)n
i=1∥weak

p · ∥(y∗
i )n

i=1∥weak
1 = C · ∥(xi)n

i=1∥weak
p · ∥u∥.

This validates the following :

ν1(υx) = sup{| tr(u ◦ υx)| : u ∈ B(Y, ℓn
1 ), ∥u∥ ≤ 1} ≤ C · ∥(xi)n

i=1∥weak
p

and hence ∥Un∥ ≤ C for every n ∈ N. This yields that a linear map U :
(XN, ∥ · ∥weak

p ) → N (ℓ1, Y ) defined by U(xn) =
∑

n en ⊗ Txn, is continuous.
Now let us take any sequence (xn) ∈ ℓu

p(X). Then the operator S =∑
n en ⊗ Txn ∈ N1(ℓ1, Y ). Fix ϵ > 0 and choose a nuclear representation

S =
∑

n βn ⊗ zn such that
∑

n ∥βn∥ℓ∞∥zn∥ ≤ ν1(S)+ ϵ. Writing α = (αn) ∈ ℓ1
and βk = (βk,n)n ∈ ℓ∞, we see that Sα =

∑
k⟨α, βk⟩zk =

∑
n αnTxn =∑

k(
∑

n αnβk,n)zk, and so Txn =
∑

k
βk,n

∥βk∥∞
∥βk∥∞zk. Since

∑
k ∥βk∥∞zk is

an absolutely convergent series in Y , it follows that (Txn) ∈ Rbvc(Y ). This
forces that T ∈ Rbvc(Xu

p , Y ). ¤
Applying the above theorem we draw usable necessary condition which guar-

antees that every unconditionally weakly p-summable sequence in a Banach
space X belongs to Rbvc(X).

Corollary 2. Let 1 < p < ∞. Suppose that ℓu
p(X) ⊂ Rbvc(X). Then for every

Banach space Y , we have Π1(X, Y ) ⊂ Π1,p,1(X,Y ).

Proof. Let us take any operator T ∈ Π1(X, Y ). Then our hypothesis informs
us that T takes each sequence (xn) in ℓu

p(X) into a sequence (Txn) in Rbv(Y ).
Theorem 1 steps in to conclude that T ∈ Π1,p,1(X, Y ). This gives us the desired
inclusion. ¤

Theorem 1 enables us to find a special kind of Banach space Y with the
property that any operator T ∈ B(X, Y ) belongs to Rbvc(Xu

p , Y ).

Corollary 3. Let 1 < p < ∞ and let T ∈ B(X, Y ). If Y ∗ satisfies Grothendieck’s
theorem, then T ∈ Rbvc(Xu

p , Y ).

Proof. We select any operator S ∈ B(Y, ℓ1). As Y ∗ satisfies Grothendieck’s
theorem, we have that S ∈ Π2(Y, ℓ1) and hence S|TX ∈ Π2(TX, ℓ1). Taking
note of the fact that the formal inclusion map i1p′ : ℓ1 → ℓp′ is 1-summing we
derive that i1p′ ◦ S|TX ∈ N1(TX, ℓp′). Then we see from the proof of theorem
1 that T ∈ Rbvc(Xu

p , Y ). ¤
In the next theorem we establish the following characterization of operators

belonging to the space R(Xu
p , Y ).
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Theorem 4. Let 1 < p < ∞ and let T ∈ B(X, Y ). Then the following
statements are equivalent :

(i) T ∈ Rc(Xu
p , Y ).

(ii) T ∈ R(Xu
p , Y ).

(iii) There exists a constant C > 0 such that
n∑

i=1

|⟨Txi, y
∗
i ⟩| ≤ C · ∥(xi)n

i=1∥weak
p · π1(

n∑
i=1

y∗
i ⊗ ei : Y → ℓn

1 )

regardless of the choice of n ∈ N, and the vectors x1, · · ·xn in X and
y∗
1 , · · · y∗

n in Y ∗.

Proof. (i)⇒(ii) is an immediate consequence of the fact that Rc(Y ) ⊂ R(Y ).
(ii)⇒(iii). We select any sequence (xn) ∈ ℓu

p(X). The hypothesis (ii) tells us
that (Txn) ∈ R(Y ) and so given ϵ > 0 there exists a vector measure µ :

∑
→ Y

for which {Txn : n ∈ N} ⊂ rg µ and tsv(µ) ≤ ϵ + ∥(Txn)∥r. Let λ be a control
measure for µ and let I : L∞(λ) → Y : f 7→

∫
fdµ be the integration operator.

Take a sequence (y∗
n) in Y ∗ so that the linear map S : Y → ℓ1 : y 7→ (⟨y∗

n, y⟩)n

is 1-summing. Then S ◦ I : L∞(λ) → ℓ1 is 1-summing. The Radon-Nikodym
property of ℓ1 indicates that S ◦ I is nuclear and so is (S ◦ I)∗. Notice that

(·) ∥(S ◦ I)∗en∥ = sup{|⟨(S ◦ I)∗en, f⟩| : ∥f∥∞ ≤ 1}

= sup{|⟨
∫

fdµ, y∗
n⟩| : ∥f∥∞ ≤ 1} = sup{|

∫
fd(y∗

n ◦ µ)| : ∥f∥∞ ≤ 1}.

Choose An ∈
∑

so that µ(An) = Txn for each n ∈ N. We deduce from (·) that∑
n

|
∫

χAnd(y∗
n ◦ µ)| =

∑
n

|y∗
n ◦ µ(An)| =

∑
n

|⟨y∗
n, Txn⟩|

≤
∑

n

∥(S ◦ I)∗en∥ = ν1((S ◦ I)∗) ≤ ν1(S ◦ I) = π1(S ◦ I)

= tv(S ◦ µ) ≤ π1(S) tsv(µ) ≤ π1(S)(ϵ + ∥(Txn)∥r).

This allows us to define a continuous linear map ϕ : R(TX) → R via ϕ(Txn) =∑∞
n=1⟨Txn, y∗

n⟩ for all (Txn) ∈ R(TX). It takes another appeal to the hy-
pothesis (ii) to reveal that the natural map J : ℓu

p(TX) → R(TX) is contin-
uous. Thus the composition ϕ ◦ J : ℓu

p(TX) → R is continuous. Then the
operator u : TX → ℓp′ defined by u(Tx) = (⟨Tx, y∗

n⟩)n is integral. The re-
flexivity of ℓp′ guarantees that u is nuclear. The upshot of all this is that
the map Φ : Π(Y, ℓ1) → N1(TX, ℓp′) : S 7→ i1p′ ◦ S|TX is continuous, where
i1p′ : ℓ1 → ℓp′ is the formal inclusion map. Hence for every n ∈ N there is a
constant C > 0 such that

(··) ν1(
n∑

k=1

y∗
k ⊗ ek : TX → ℓn

p′) ≤ C · π1(
n∑

k=1

y∗
k ⊗ ek : Y → ℓn

1 ).
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Now given x1, · · ·xn in X and y∗
1 , · · · y∗

n in Y ∗ we define operators u : TX →
ℓn
p′ and v : ℓn

p′ → Y by u(Tx) = (⟨Tx, y∗
i ⟩)n

i=1 and v((ai)n
i=1) =

∑n
i=1 aiTxi,

respectively. We make use of condition (··) to obtain the following :

| tr(u ◦ v)| = |
n∑

i=1

⟨Txi, y
∗
i ⟩| ≤

n∑
i=1

|⟨Txi, y
∗
i ⟩|

≤ ı1(u ◦ v) = ν1(u ◦ v) ≤ ∥v∥ · ν1(u)

≤ C · sup{(
n∑

i=1

|⟨y∗, Txi⟩|p)1/p : ∥y∗∥ ≤ 1} · π1(
n∑

i=1

y∗
i ⊗ ei : Y → ℓn

1 )

≤ C ′ · ∥(xi)n
i=1∥weak

p · π1(
n∑

i=1

y∗
i ⊗ ei : Y → ℓn

1 ).

(iii)⇒(i). Take a finite sequence (y∗
i )n

i=1 in Y ∗ so that the linear map u :
Y → ℓn

1 : y 7→ (⟨y∗
i , y⟩)n

i=1 is 1-summing. For every n ∈ N, we define a linear
map Un : (Xn, ∥ · ∥weak

p ) → N∞(ℓn
1 , Y ) by Un(xi)n

1 =
∑n

i=1 ei ⊗ Txi = υx. As
a consequence of hypothesis (iii) we have

| tr(u ◦ υx)| = |
n∑

i=1

⟨Txi, y
∗
i ⟩| ≤

n∑
i=1

|⟨Txi, y
∗
i ⟩|

≤ C · ∥(xi)n
i=1∥weak

p · π1(
n∑

i=1

y∗
i ⊗ ei : Y → ℓn

1 ) = C · ∥(xi)n
i=1∥weak

p · π1(u).

This validates the following :

ν∞(υx) = sup{| tr(u ◦ υx)| : u ∈ Π1(Y, ℓn
1 ), π1(u) ≤ 1} ≤ C · ∥(xi)n

i=1∥weak
p

and so ∥Un∥ ≤ C for every n ∈ N. This gives us that a linear map U :
(XN, ∥ · ∥weak

p ) → N∞(ℓ1, Y ) defined by U(xn) =
∑

n en ⊗ Txn, is continuous.
Now let us take any sequence (xn) ∈ ℓu

p(X). Then the operator S =
∑

n en⊗
Txn ∈ N∞(ℓ1, Y ). Given ϵ > 0, we choose a ∞-nuclear representation S =∑

n βn⊗zn such that supn ∥βn∥·∥(zn)∥weak
1 ≤ ν∞(S)+ϵ. Writing α = (αn) ∈ ℓ1

and βk = (βk,n)n ∈ ℓ∞, we get that Sα =
∑

k⟨α, βk⟩zk =
∑

n αnTxn =∑
k(

∑
n αnβk,n)zk, and thus Txn =

∑
k

βk,n

∥βk∥∞
∥βk∥∞zk. Since

∑
k ∥βk∥∞zk

is an unconditionally convergent series in Y , we obtain that (Txn) ∈ Rc(Y ).
This implies that T ∈ Rc(Xu

p , Y ). ¤

In the following we find usable sufficient condition which implies that every
unconditionally weakly p-summable sequence in a Banach space X lies inside
the range of an X-valued measure with relatively compact range.

Corollary 5. Let 1 < p < ∞. If Π1(X, ℓ1) ⊂ Π1,p,1(X, ℓ1), then ℓu
p(X) ⊂

Rc(X).



210 HI JA SONG

Proof. Let us take the operator T =
∑

n x∗
n ⊗ en ∈ Π1(X, ℓ1). The hypothesis

assures us that T ∈ Π1,p,1(X, ℓ1) and hence for any finite collection of vectors
x1, · · ·xn in X we have

n∑
i=1

|⟨xi, x
∗
i ⟩| =

n∑
i=1

|⟨xi, T
∗ei⟩| =

n∑
i=1

|⟨Txi, ei⟩|

≤ π1,p,1(T ) · ∥(xi)n
i=1∥weak

p · sup{(
n∑

i=1

|⟨ei, y⟩| : y ∈ Bℓ1}

≤ C ′ · ∥(xi)n
i=1∥weak

p · ∥(x∗
i )

n
i=1∥weak

1 .

We apply theorem 1 of [8] to produce that the operator
∑

n x∗
n⊗en ∈ N1(X, ℓp′).

From the proof of theorem 4 we see that ℓu
p(X) ⊂ Rc(X). ¤

Apply theorem 4 we find a special kind of Banach space Y with the property
that any operator T ∈ B(X, Y ) belongs to Rc(Xu

p , Y ).

Corollary 6. Let 1 < p < ∞ and let T ∈ B(X,Y ). Suppose that Y ∗ is
isomorphic to a subspace of L1(µ) for some measure µ. Then T ∈ Rc(Xu

p , Y ).

Proof. We select any operator S ∈ Π1(Y, ℓ1). The hypothesis enables us to
invoke theorem 3.6 of [6] to infer that S ∈ N1(Y, ℓ1) and so i1p′ ◦ S|TX ∈
N1(TX, ℓp′), where i1p′ : ℓ1 → ℓp′ is the formal inclusion map. From the proof
of theorem 4 we know that T ∈ Rc(Xu

p , Y ). ¤

The next corollary shows that theorem 1 is equivalent to theorem 4 under
some restrictions to the underlying Banach space.

Corollary 7. Let 1 < p < ∞. Suppose that Y and Y ∗ satisfy Grothendieck’s
theorem. Then the following statements about an operator T : X → Y are
equivalent :

(i) T ∈ Rbvc(Xu
p , Y ).

(ii) T ∈ Rbv(Xu
p , Y ).

(iii) T ∈ R(Xu
p , Y ).

(iv) T ∈ Rc(Xu
p , Y ).

(v) T ∈ Π1,p,1(X, Y ).

Proof. The equivalence of (i),(ii) and (v) is covered by theorem 1. The implica-
tion (ii)⇒(iii) is trivial. In theorem 4 we showed that (iii)⇔(iv). To show that
(iv) implies (v), we consider the operator S =

∑
n y∗

n ⊗ en ∈ B(Y, ℓ1). As Y ∗

satisfies Grothendieck’s theorem, we have that S ∈ Π2(Y, ℓ1) and hence there
exists a factorization S : Y

v−→ ℓ2
u−→ ℓ1. Since Y satisfies Grothendieck’s

theorem, it follows that v ∈ Π1(Y, ℓ2) and so S ∈ Π1(Y, ℓ1). This forces that
there is a constant C such that

(∗) π1(S) ≤ C∥S∥.
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On account of hypothesis (iv), we take account of theorem 4 to deduce that
there exists a constant C > 0 such that no matter how we select finitely many
vectors x1, · · ·xn from X and y∗

1 , · · · y∗
n from Y ∗, we have

n∑
i=1

|⟨Txi, y
∗
i ⟩| ≤ C · ∥(xi)n

i=1∥weak
p · π1(

n∑
i=1

y∗
i ⊗ ei : Y → ℓn

1 ).

Then it follows from condition (∗) that
n∑

i=1

|⟨Txi, y
∗
i ⟩| ≤ C ′ · ∥(xi)n

i=1∥weak
p · ∥(y∗

i )n
i=1∥weak

1 .

This means that T ∈ Π1,p,1(X, Y ). ¤

Now we pass on to the study of sequences lying in the range of a vector
measure with relatively compact range.

Proposition 8. Let 1 < p < ∞. The following statements are equivalent :
(i) Ip(X, ℓ1) ⊂ Π1(X, ℓ1).
(ii) If (xn) ∈ Rc(X), then the operator

∑
n en ⊗ xn ∈ Πp′(ℓ1, X).

Proof. (i)⇒(ii). Take any sequence (xn) ∈ Rc(X). An appeal to proposition
1.4 of [6] yields that given ϵ > 0 there exists an unconditionally convergent
series

∑∞
k=1 yk in X for which xn =

∑∞
k=1 αkyk and ∥(yk)∥weak

1 < ϵ+ ∥(xn)∥rc,
where ∥(αk)∥∞ ≤ 1. The hypothesis (i) guarantees the existence of a constant
C > 0 such that π1(T ) ≤ C ·ıp(T ) for any operator T =

∑
n x∗

n⊗en ∈ Ip(X, ℓ1).
Then we have∑

n

|⟨xn, x∗
n⟩| =

∑
n

|⟨
∑

k

αkyk, x∗
n⟩| ≤

∑
k

∑
n

|⟨yk, x∗
n⟩|

=
∑

k

∥Tyk∥ ≤ π1(T ) · ∥(yk)∥weak
1 ≤ C · ıp(T ) · (ϵ + ∥(xn)∥rc).

The upshot of all this is that the linear map Φ : Ip(X, ℓ1) → ℓ1 :
∑

n x∗
n⊗en 7→

(⟨xn, x∗
n⟩)n is continuous.

Given T =
∑

n x∗
n ⊗ en and (βn) ∈ ℓ∞, we use the trace duality to obtain

the following :

⟨Φ∗(βn), T ⟩ = ⟨(βn), Φ(T )⟩ =
∑

n

⟨βnxn, x∗
n⟩ = tr(T ◦ Φ∗(βn))∑

k

⟨T ◦ Φ∗(βn)ek, ek⟩ =
∑

k

⟨
∑

n

⟨x∗
n, Φ∗(βn)ek⟩en, ek⟩

=
∑

n

⟨x∗
n, Φ∗(βn)en⟩.

Therefore Φ∗ : ℓ∞ → Πp′(ℓ1, X) : (βn) 7→
∑

n en ⊗ βnxn. Then the operator∑
n en ⊗ xn ∈ Πp′(ℓ1, X).
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(ii)⇒(i). From the proof of theorem 4 we see that if the operator S =
∑

n en ⊗
xn ∈ N∞(ℓ1, X), then (xn) ∈ Rc(X) and ∥(xn)∥rc < ν∞(S).

Now let us select any sequence (xn) ∈ Rc(X). We use this sequence to
define an operator T : ℓ1 → X via T (αn) =

∑
n αnxn. It takes another

appeal to proposition 1.4 of [6] to establish that given ϵ > 0 there exists an
unconditionally convergent series

∑
k yk in X so that xn =

∑
k δk,nyk and

∥(yk)∥weak
1 < ϵ+∥(xn)∥rc, where ∥(δk,n)k∥∞ ≤ 1. We exploit the fact that there

exist a weakly summable sequence (zk) in X and a sequence (λk) in BC0 for
which yk = λkzk and ∥(zk)∥weak

1 ≤ ϵ+∥(yk)∥weak
1 to see that T ∈ N∞(ℓ1, X). In

fact T (αn) =
∑

n αn

∑
k δk,nyk =

∑
k

∑
n αnδk,nλkzk =

∑
k⟨α, λkδk⟩zk, where

δk = (δk,n)n. Thus ν∞(T ) ≤ supk ∥λkδk∥∞ · ∥(zk)∥weak
1 ≤ ϵ + ∥(yk)∥weak

1 <
2ϵ + ∥(xn)∥rc. Then the hypothesis (ii) leads us to have that N∞(ℓ1, X) ⊂
Πp′(ℓ1, X). Using the trace duality we draw that Ip(X, ℓ1) ⊂ Π1(X, ℓ1). ¤
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[8] C. Piñeiro, Banach spaces in which every p-weakly summable sequences lies in the range
of a vector measure, Proc. Amer. Math. Soc. 124 (1996), 2013–2020.
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