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CHARACTERIZATION OF OPERATORS
TAKING COMPACT SETS INTO SUBSETS

OF THE RANGES OF VECTOR MEASURES

Hi Ja Song

Abstract. We characterize operators between Banach spaces send-
ing compact sets into sets that lie in the range of a vector mea-
sure. Further, we describe operators between Banach spaces taking
compact sets into sets that lie in the range of a vector measure of
bounded variation.

1. Introduction

The intriguing connection between the geometry of subsets of Ba-
nach spaces and vector measure theory is not confined to Radon-
Nikodym considerations. Questions regarding the finer structure of
the range of a vector measure have found interest since Liapounoff’s
discovery of his everintriguing convexity theorem which states that the
range of a nonatomic vector measure with values in a finite dimensional
space is compact and convex. The infinite dimensional version of Lia-
pounoff’s theorem remained resistant to analysis for a long time. It is
an important fact, first established by Bartle, Dunford and Schwartz in
the early fifties, that the range of a vector measure is always relatively
weakly compact.

Among the relatively weakly compact subsets of Banach spaces,
those that are the range of a vector measure occupy a special place ; a
remarkable similarity to the relatively norm compact sets is evidenced.
For instance, Diestel and Seifert [3] proved that any sequence in the
range of a vector measure admits a subsequence with norm convergent
arithmetic means, a phenomenon not shared by all weakly compact
sets.
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Any intuition gained by noting the similarities between relatively
norm compact sets and sets arising as ranges of vector measures must
be tempered by the fact that the closed unit ball of an infinite dimen-
sional Banach space can be the range of a vector measure.

Anantharaman and Garg [1] proved that the closed unit ball of a
Banach space X is the range of a vector measure if and only if the dual
of a Banach space X is isometrically isomorphic to a reflexive subspace
of L1(µ) for some probability measure µ.

Anantharaman and Diestel [2] found that every weakly compact
subset of BD1 (the separable L∞ space of Bourgain and Delbaen that
has the weakly compact extension property) lies inside the range of a
BD1-valued measure. They also gave some necessary and some suffi-
cient conditions for a sequence in a Banach space X to lie in the range
of an X-valued measure.

Piñeiro and Rodriguez-Piazza [11] showed that the compact subset
of a Banach space X lies inside the range of an X-valued measure if
and only if the dual of a Banach space X can be embedded into an
L1(µ)-space for a suitable measure µ.

It is an easy consequence of the celebrated Dvoretsky-Rogers the-
orem that given an infinite dimensional Banach space X, there is an
X-valued measure that does not have finite variation [14]. Thus the
question arose : Which Banach spaces X have the property that every
compact subset of X lies inside the range of an X-valued measure of
bounded variation ? This was answered by Piñeiro and Rodriguez-
Piazza [11].

In this paper we deal with the above mentioned problems in the
framework of operators acting between Banach spaces. Here, we present
Piñeiro’s approach to this subject [12].

Piñeiro introduced the spaceR(X,Y ) of all operators from a Banach
space X into a Banach space Y taking compact subsets of X into
subsets that lie in the range of a Y -valued measure. In addition, he
defined Rbv(X, Y ) as the set of all operators from a Banach space X
into a Banach space Y sending compact subsets of X into subsets that
lie in the range of a Y -valued measure with bounded variation.

We first give usable necessary and sufficient conditions for an oper-
ator to belong to the space R.

Next we provide a description of operators belonging to the space



Characterization of operators 105

Rbv in terms of (1,∞, 1)-summing operators.
Finally we see how the space R is linked with the space Rbv.

2. Definitions and Notation

We present some of the definitions and notation to be used. Through-
out this paper X and Y denote Banach spaces.

A function µ from a σ-field Σ of subsets of a set Ω to a Banach
space X is called a countably additive vector measure if µ(∪∞n=1En) =∑∞

n=1 µ(En) in the norm topology of X for all sequences (En) of
pairwise disjoint members of Σ such that ∪∞n=1En ∈ Σ. The range
of µ will be denoted by rg µ. The variation of µ is the extended
nonnegative function |µ| whose value on a set E ∈ Σ is given by
|µ|(E) = supπ

∑
A∈π ‖µ(A)‖, where the supremum is taken over all

partitions π of E into a finite number of pairwise disjoint members of
Σ. If |µ|(Ω) = tv(µ) < ∞ then µ will be called a measure of bounded
variation. The semivariation of µ is the extended nonnegative function
‖µ‖ whose value on a set E ∈ Σ is given by ‖µ‖(E) = sup{|x∗ ◦µ|(E) :
x∗ ∈ X∗, ‖x∗‖ ≤ 1}, where |x∗ ◦ µ| is the variation of the real-valued
measure x∗ ◦ µ. If ‖µ‖(Ω) = tsv(µ) < ∞, then µ will be called a
measure of bounded semivariation.

Notation. (1) The dual of a Banach space X is denoted by X∗.
(2) The closed unit ball of a Banach space X is denoted by

BX .
(3) The unit sphere of a Banach space X is denoted by SX .
(4) The dual operator of an operator T is denoted by T ∗.
(5) L(X,Y ) denotes the set of all bounded linear operators

from X into Y .
(6) The canonical isometric embedding from a Banach space

Y into the bidual of Y is denoted by κY .

The space R(X) is defined to consist of all sequences (xn) in X such
that there exists an X-valued measure µ satisfying {xn : n ∈ N} ⊂ rg µ.
For each (xn) ∈ R(X), define ‖(xn)‖r = inf tsv(µ), where the infimum
is taken over all vector measures µ as above.

The space Rc(X) consists of all sequences in X that lie inside the
range of an X-valued measure with relatively compact range. If (xn)
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belongs to Rc(X) then proposition 1.4. of [11] ensures that there
exists an unconditionally convergent series

∑∞
k=1 yk in X for which

{xn : n ∈ N} ⊂ {∑∞
k=1 αkyk : (αk) ∈ `∞, ‖(αk)‖∞ ≤ 1}. For each

(xn) ∈ Rc(X), define ‖(xn)‖rc = inf sup{∑∞
k=1 |〈x∗, yk〉| : x∗ ∈ BX∗},

where the infimum is taken over all unconditionally convergent series∑∞
k=1 yk of the kind described above.
The space Rbv(X) is defined to consist of all sequences (xn) in X

such that there exists an X-valued measure µ with bounded variation
satisfying {xn : n ∈ N} ⊂ rg µ. For each (xn) ∈ Rbv(X), set ‖(xn)‖bv =
inf tv(µ), where the infimum is taken over all vector measures µ as
above.

The space Rbvc(X) consists of all sequences (xn) in X such that
there exists an absolutely convergent series

∑∞
k=1 yk in X satisfying

{xn : n ∈ N} ⊂ {∑∞
k=1 αkyk : (αk) ∈ `∞, ‖(αk)‖∞ ≤ 1}. For each

(xn) ∈ Rbvc(X), let ‖(xn)‖bvc = inf
∑∞

k=1 ‖yk‖, where the infimum is
extended over all such absolutely convergent series

∑∞
k=1 yk.

We denote by C0(X) the space of all sequences (xn) in X with
limn→∞ ‖xn‖ = 0.

We write R(X, Y ) (respectively Rc(X, Y )) for the set of all opera-
tors T from X into Y such that for each sequence (xn) ∈ C0(X), the
sequence (Txn) belongs to R(Y ) (respectively Rc(Y )).

We denote by Rbv(X, Y ) (respectively Rbvc(X, Y )) the space of all
operators T from X into Y such that for each sequences (xn) ∈ C0(X),
the sequence (Txn) belongs to Rbv(Y ) (respectively Rbvc(Y )).

Let XN
0 (respectively Y N

0 ) denote the linear space of all vector se-
quences (xn) in X (respectively Y ) such that the set of n for which
xn 6= 0 is finite.

Let [A, α] be a Banach operator ideal. We say that the operator T :
X → Y belongs to A∗(X, Y ) provided there is a constant C ≥ 0 such
that regardless of the finite dimensional normed spaces E and F and
operators a ∈ L(E, X), b ∈ L(Y, F ) and U ∈ L(F,E), the composition
E

a−→ X
T−→ Y

b−→ F
U−→ E satisfies | tr(UbTa)| ≤ C ·‖a‖·‖b‖·α(U). The

collection of all such C has an infimum, which is denoted by α∗(T ).
The Banach operator ideal [A∗, α∗] is called the adjoint operator ideal
of [A, α].

Let [A, α] be a Banach operator ideal. We introduce the notation
Ad(X, Y ) for the set of all T ∈ L(X, Y ) with T ∗ ∈ A(Y ∗, X∗). For
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such T ’s we also stipulate that αd(T ) = α(T ∗). A Banach operator
ideal [Ad, αd] is called the dual operator ideal of [A, α].

For 1 ≤ p ≤ ∞, an operator T ∈ L(X,Y ) is called p-integral if
there are a probability measure µ and operators A ∈ L(Lp(µ), Y ∗∗)
and B ∈ L(X,L∞(µ)) such that κY ◦ T = A ◦ ip ◦ B, where ip :
L∞(µ) → Lp(µ) is the formal identity. The p-integral norm of T is
defined by ıp(T ) = inf{‖A‖‖B‖}, where the infimum is extended over
all measures µ and operators A and B as above. The collection of all
p-integral operators from X into Y is denoted by Ip(X, Y ).

Let 1 ≤ p < ∞. The vector sequence (xn) in X is weakly p-
summable if the scalar sequences (〈x∗, xn〉) are in `p for every x∗ ∈ X∗.
We denote by `weak

p (X) the set of all such sequences in X. This is a
Banach space under the norm

‖(xn)‖weak
p = sup

{
(
∑

n

|〈x∗, xn〉|p)1/p : x∗ ∈ X∗, ‖x∗‖ ≤ 1
}
.

An operator T ∈ L(X, Y ) is said to be nuclear if it can be written
in the form T =

∑∞
i=1 τi x∗i

⊗
yi with (x∗i ) in BX∗ , (yi) in BY and

(τi) ∈ `1. The set of these operators is denoted by N (X, Y ). For
T ∈ N (X, Y ) we define ν(T ) = inf

∑∞
i=1 |τi|, with the infimum taken

over all nuclear representations of T as above.
For 1 ≤ p < ∞, an operator T ∈ L(X, Y ) is called absolutely p-

summing if there exists a constant C ≥ 0 such that for any finite
subset {xi}n

i=1 ⊂ X, we have

(
n∑

i=1

‖Txi‖p)1/p ≤ C · sup
{
(

n∑

i=1

|〈x∗, xn〉|p)1/p : x∗ ∈ X∗, ‖x∗‖ ≤ 1
}
.

The infimum of such C is the absolutely p-summing norm of T and
denoted by πp(T ). We write Πp(X, Y ) for the set of all absolutely
p-summing operators from X into Y .

Let 1 ≤ q < ∞, 1 ≤ p, r ≤ ∞ and 1/q ≤ 1/p+1/r. An operator T ∈
L(X, Y ) is called absolutely (q, p, r)-summing if there exists a constant
C ≥ 0 such that for all finite subset {xi}n

i=1 ⊂ X and {y∗i }n
i=1 ⊂ Y ∗,

we have

(
n∑

i=1

|〈Txi, y
∗
i 〉|q)1/q ≤ C · ‖(xi)‖weak

p · ‖(y∗i )‖weak
r .
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The infimum of such C is the absolutely (q, p, r)-summing norm of
T and denoted by πq,p,r(T ). We write Πq,p,r(X, Y ) for the set of all
absolutely (q, p, r)-summing operators from X into Y .

3. Results

Let us start with the problem which gives a description of operators
belonging to the space R in terms of ∞-integal operators.

Theorem 1. Let T ∈ L(X, Y ). Then the following statements are
equivalent.

(i) T ∈ R(X,Y )
(ii) T ∈ Rc(X, Y )
(iii) Regardless of the Banach space Z and the operator U ∈ Id

∞(Z, X),
the composition TU : Z → Y is ∞-integral.

(iv) There is a constant C > 0 for which
∑m

i=1 ‖T ∗u∗i ‖ ≤ C
∑n

j=1 ‖v∗j ‖
whenever (u∗i )

m
i=1 and (v∗j )n

j=1 are finite sequences in Y ∗ satis-

fying
∑m

i=1 |〈u∗i , y〉| ≤
∑n

j=1 |〈v∗j , y〉| for all y ∈ Y .

Proof. (i)⇒(ii). Assume that T ∈ R(X,Y ). Then for every finite
subset E = {x1, · · · , xn} of BX there is a Y -valued measure µ with
bounded semivariation satisfying T (E) ⊂ rg µ and tsv(µ) ≤ C for some
constant C > 0. Choose A1, · · · , An ∈ Σ such that µ(Ai) = Txi for
1 ≤ i ≤ n and consider the field Σ0 generated by {A1, · · · , An}. If
E1, · · · , Em ∈ Σ0 are the atoms, we write µ(Ej) = yj for 1 ≤ j ≤
m. This assures us that T (E) ⊂ {∑m

j=1 αjyj : ‖(αj)‖∞ ≤ 1} and
sup{∑m

j=1 |〈y∗, yj〉| : y∗ ∈ BY ∗} ≤ tsv(µ) ≤ C. Now we define a linear
map T̂ : XN

0 → Y N
0 by T̂ (xn) = (Txn) for all (xn) ∈ XN

0 , where
XN

0 (respectively Y N
0 ) is equipped with the norm ‖ · ‖∞ (respectively

‖ · ‖rc). Then ‖T̂ (xn)‖rc = ‖(Txn)‖rc ≤ C ′ ‖(xn)‖∞ for all (xn) ∈ XN
0

and hence T̂ is bounded. Since XN
0 is dense in C0(X), it follows that

(Txn) ∈ Rc(Y ) for all (xn) ∈ C0(X) with ‖(Txn)‖rc ≤ C ′ ‖(xn)‖∞.
This yields that T ∈ Rc(X,Y ).
(ii)⇒(iii). Let F be a finite dimensional subspace of Y ∗. Given ε > 0
we select x1, · · · , xn in SX so that ‖x∗‖ ≤ (1 + ε) sup{|〈x∗, xi〉| : i =
1, · · · , n} for all x∗ ∈ T ∗(F ). (·)
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The hypothesis (ii) tells us that (Txi)n
i=1 ∈ Rc(Y ). Proposition 1.4.

of [11] guarantees the existence of an unconditionally convergent series∑
yk in Y such that {Txi : 1 ≤ i ≤ n} ⊂ {∑αkyk : ‖(αk)‖∞ ≤ 1} and

sup{∑ |〈y∗, yk〉| : y∗ ∈ BY ∗} ≤ C for some constant C > 0. We use
this series to define an operator S : F → `1 via Sy∗ = (〈y∗, yk〉) for all
y∗ ∈ F . It is obvious that ‖S‖ ≤ C. Note that if Sy∗ = 0 for all y∗ ∈ F
then |〈T ∗y∗, xi〉| = |〈y∗, Txi〉| ≤

∑ |〈y∗, yk〉| = 0 for 1 ≤ i ≤ n and
thus we can call on (·) to obtain T ∗y∗ = 0 for all y∗ ∈ F . This permits
us to well-define an operator R : S(F ) → X∗ by R(Sy∗) = T ∗y∗ for all
y∗ ∈ F . By another use of (·) we have ‖R‖ ≤ 1 + ε. The construction
of S and R informs us that T ∗|F is factorizable through a subspace of
`1. We apply a result due to Lindenstrauss and Pelczynski [9] to derive
that T ∗ admits a factorization through a subspace of an L1(µ)-space
for some measure µ. Kwapień’s theorem [8] steps in to ensure that
statement (iii) holds.
(iii)⇒(i). The hypothesis (iii) allows us to use Kwapień’s theorem [8] to
get that T ∗ factors through a subspace of an L1(λ)-space for a suitable
measure λ. Then T ∗∗ can be factored through a quotient of an L∞(λ)-
space for some measure λ as follows : T ∗∗ : X∗∗ B−→ L∞(λ)/N A−→ Y ∗∗.
First we will show that C0(L∞(λ)/N) ⊂ R(L∞(λ)/N). (·)
To this end, we take f̄1, · · · , f̄n in B(L∞(λ)/N). Given ε > 0 we can
pick fi ∈ f̄i so that ‖fi‖ ≤ 1 + ε for 1 ≤ i ≤ n. Since L∞(λ) is an
L∞,1+ε-space, {f1, · · · , fn} sits inside a finite dimensional subspace E
of L∞(λ) for which we can find an isomorphism v : `m

∞ → E, where
m = dim E, with ‖v−1‖ = 1 and ‖v‖ ≤ 1 + ε. Since v is weakly
compact, we invoke proposition 1.3 of [11] to infer that there exists
an E-valued measure µ such that {f1, · · · , fn} ⊂ v(B`m∞) = rg µ and
tsv(µ) ≤ 2(1 + ε). Then µ1 = qN ◦ µ, where qN : L∞(λ) → L∞(λ)/N
is the natural quotient map, is an L∞(λ)/N -valued measure so that
{f̄1, · · · , f̄n} ⊂ rg µ1 and tsv(µ1) ≤ 2(1 + ε), which verifies (·).
Now let us take (xn) ∈ C0(X). Then (xn) ∈ C0(X∗∗) and hence
(Bxn) ∈ C0(L∞(λ)/N). From (·) we know that (Bxn) ∈ R(L∞(λ)/N)
and so (T ∗∗xn) = (ABxn) ∈ R(Y ∗∗). This gives κY T ∈ R(X,Y ∗∗).
As a result for every finite subset E = {x1, · · · , xn} of BX there ex-
ists a Y ∗∗-valued measure ν with bounded semivariation satisfying
κY T (E) ⊂ rg ν and tsv(ν) ≤ C for some constant C > 0. Select
A1, · · · , An ∈ Σ with ν(Ai) = κY Txi for 1 ≤ i ≤ n and consider the
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field Σ0 generated by {A1, · · · , An}. Let ν̃ be the restriction of ν to
Σ0 and let F be the finite dimensional linear span of rg(ν̃). Thanks
to the principle of local reflexivity, for each ε > 0, there is an injective
operator u : F → Y such that uy = y for all y ∈ F ∩Y and ‖u‖ ≤ 1+ε.
Therefore ν1 = u◦ ν̃ is a Y -valued measure for which T (E) ⊂ rg ν1 and
tsv(ν1) ≤ (1 + ε) C. This forces T ∈ R(X,Y ).
(iii)⇒(iv). On account of hypothesis (iii), we take account of Kwapień’s
theorem [8] to deduce that there exist a subspace L of a space L1(µ)
and a factorization T ∗ : Y ∗ W−→ L

V−→ X∗ with ‖v‖ · ‖w‖ ≤ C. Let
(u∗i )

m
i=1 and (v∗j )n

j=1 be finite sequences in Y ∗ satisfying

(·)
m∑

i=1

|〈u∗i , y〉| ≤
n∑

j=1

|〈v∗j , y〉| for all y ∈ Y .

We use these sequences to define operators R : Y → `m
1 and S : Y → `n

1

via Ry = (〈u∗i , y〉)m
i=1 for all y ∈ Y and Sy = (〈v∗j , y〉)n

j=1 for all y ∈ Y ,
respectively. Our condition (·) translates to read ‖Ry‖ ≤ ‖Sy‖ for all
y ∈ Y , and this allows us to well-define an operator A : S(Y ) → `n

1

by A(Sy) = Ry for all y ∈ Y . Plainly, ‖A‖ ≤ 1. Thinking of W as
an operator with values in L1(µ), we can apply Kwapień’s result [7] to
produce

m∑

i=1

‖T ∗u∗i ‖ =
m∑

i=1

‖V Wu∗i ‖ ≤ ‖V ‖
m∑

i=1

‖WR∗ei‖ ≤ ‖V ‖π1(WR∗)

= ‖V ‖π1(RW ∗) = ‖V ‖π1(ASW ∗) ≤ ‖V ‖ ‖W‖π1(S) ≤ C π1(S).

On the other hand, we obtain

π1(S) = sup {
∞∑

k=1

‖Syk‖ : ‖(yk)‖weak
1 ≤ 1}

= sup {
∞∑

k=1

n∑

j=1

|〈S∗ej , yk〉| : ‖(yk)‖weak
1 ≤ 1}

≤
n∑

j=1

‖S∗ej‖ =
n∑

j=1

‖v∗j ‖.
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Accordingly we end up with
∑m

i=1 ‖T ∗u∗i ‖ ≤ C
∑n

j=1 ‖v∗j ‖.
(iv)⇒(iii). Let F be a finite dimensional subspace of Y ∗, and write K
for the norm compact unit sphere of F ∗. Denote by Φ the collection of
all functions ϕ : K → R which are defined by ϕ(y) =

∑m
i=1 |〈u∗i , y〉| −∑n

j=1 |〈v∗j , y〉|, y ∈ K, where (u∗i )
m
i=1 and (v∗j )n

j=1 are finite sequences
in F such that

∑m
i=1 ‖T ∗u∗i ‖ > C

∑n
j=1 ‖v∗j ‖. The hypothesis (iv)

leads us to have that sup{ϕ(y) : y ∈ K} > 0 for each ϕ ∈ Φ. Let Ψ =
{f ∈ C(K,R) : f(y) < 0 for all y ∈ K}. Then the separation theorem
and the Riesz representation theorem furnish us with a measure µ
in C(K,R)∗ and a real number α such that 〈µ, f〉 < α ≤ 〈µ, ϕ〉 for
all f ∈ Ψ and ϕ ∈ Φ. Moreover, the properties of Ψ and Φ entail
that α = 0, so that µ is a non-trivial posive measure. Our choice of
K guarantees that 0 < supy∗∈BF

∫
K
|〈y, y∗〉|dµ(y) ≤ µ(K), and this

enables us to scale µ so that C = supy∗∈BF

∫
K
|〈y, y∗〉|dµ(y). We

consider the operator W : F → L1(µ) which is given by W (y∗) =
〈y∗, ·〉 for all y∗ ∈ F . Now we assume that ‖T ∗u∗‖ > C for u∗ ∈ F and
v∗ ∈ BF . Then the singletons {u∗} and {v∗} give rise to an element ϕ
of Φ with ϕ(y) = |〈u∗, y〉| − |〈v∗, y〉| for all y ∈ K. As 〈µ, ϕ〉 ≥ 0, we
obtain ‖Wu∗‖ =

∫
K
|〈u∗, y〉|dµ(y) ≥ ∫

K
|〈v∗, y〉|dµ(y), and a passage to

the supremum over all v∗ ∈ BF leads to ‖Wu∗‖ ≥ C. In other words,
we arrive at the conclusion that ‖T ∗u∗‖ ≤ ‖Wu∗‖ for all u∗ ∈ F . This
signifies that there exists an operator V : W (F ) → X∗, of norm at
most one, such that V (Wy∗) = T ∗y∗ for all y∗ ∈ F . Consequently
T ∗|F is factorizable through a subspace of L1(µ). An appeal to a
result of Lindenstrauss and Pelczynski [9] establishes that T ∗ admits
a factorization through a subspace of L1(µ). Kwapień’s theorem [8]
assures us that statement (iii) holds. ¤

In the next theorem we characterize operators belonging to the space
Rbv in terms of (1,∞, 1)-summing operators.

Theorem 2. The following statements about an operator T : X →
Y are equivalent.

(i) T ∈ Rbv(X, Y )
(ii) T ∈ Rbvc(X, Y )
(iii) T ∈ Π1,∞,1(X,Y )
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Proof. (i)⇒(ii). The hypothesis (i) tells us that for every finite
subset E = {x1, · · · , xn} of BX there exists a Y -valued measure µ
with bounded variation satisfying T (E) ⊂ rg µ and tv(µ) ≤ C for
some constant C > 0. Choose A1, · · · , An ∈ Σ such that µ(Ai) = Txi

for 1 ≤ i ≤ n and let Σ0 be the field generated by {A1, · · · , An}. If
E1, · · · , Em ∈ Σ0 are the atoms, we set µ(Ej) = yj for 1 ≤ j ≤ m. This
indicates that T (E) ⊂ {∑m

j=1 αjyj : ‖(αj)‖∞ ≤ 1} and
∑m

j=1 ‖yj‖ ≤
|µ|(∪m

j=1Ej) ≤ tv(µ) ≤ C. Now we consider a linear map T̂ : XN
0 →

Y N
0 which is given by T̂ (xn) = (Txn) for all (xn) ∈ XN

0 , where XN
0

(respectively Y N
0 )is equipped with the norm ‖·‖∞ (respectively ‖·‖bvc).

Then ‖T̂ (xn)‖bvc = ‖(Txn)‖bvc ≤ C ′ ‖(xn)‖∞ for all (xn) ∈ XN
0 and

so T̂ is bounded. We deduce from the density of XN
0 in C0(X) that

(Txn) ∈ Rbvc(Y ) for all (xn) ∈ C0(X) with ‖(Txn)‖bvc ≤ C ′ ‖(xn)‖∞.
This implies that T ∈ Rbvc(X, Y ).
(ii)⇒(iii). Let

∑∞
n=1 y∗n be a weakly unconditionally Cauchy series

in Y ∗. This series allows us to create a linear map φ : Rbvc(Y ) →
R through φ(yn) =

∑∞
n=1〈y∗n, yn〉 for all (yn) ∈ Rbvc(Y ). The very

definition of Rbvc(Y ) ensures that for each (yn) ∈ Rbvc(Y ) there exists
an absolutely convergent series

∑∞
k=1 zk satisfying {yn : n ∈ N} ⊂

{∑ αkzk : ‖(αk)‖∞ ≤ 1}. Then we have

|φ(yn)| ≤
∞∑

n=1

|〈y∗n, yn〉| ≤
∞∑

k=1

∞∑
n=1

|〈y∗n, zk〉|

≤ sup {
∞∑

n=1

|〈y∗n, y〉| : ‖y‖ ≤ 1} ·
∞∑

k=1

‖zk‖.

Passing to the infimum we get

|φ(yn)| ≤ sup {
∞∑

n=1

|〈y∗n, y〉| : ‖y‖ ≤ 1} · ‖yn‖bvc.

This means that φ is bounded. The hypothesis (ii) alerts us to the fact
that a map T̂ : C0(X) → Rbvc(Y ) defined by T̂ (xn) = (Txn) for all
(xn) ∈ C0(X), is linear and bounded. Hence the composition φ ◦ T̂ :
C0(X) → R is linear and bounded. Since φ◦T̂ (xn) =

∑∞
n=1〈y∗n, Txn〉 =∑∞

n=1〈xn, T ∗y∗n〉 for all (xn) ∈ C0(X) and the dual of C0(X) is the
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space `1(X∗), we have
∑∞

n=1 ‖T ∗y∗n‖ < ∞. The upshot of all this is
that there must be a constant C ≥ 0 such that regardless of the finite
sequence (y∗n) in Y ∗ ,

∑∞
n=1 ‖T ∗y∗n‖ ≤ C ‖(y∗n)‖weak

1 . This gives that∑∞
k=1 |〈Txk, y∗k〉| ≤ C · ‖(xk)‖∞ · ‖(y∗k)‖weak

1 regardless of the choice
of finite sets {x1, · · · , xn} ⊂ X and {y∗1 , · · · , y∗n} ⊂ Y ∗. That is T ∈
Π1,∞,1(X, Y ).
(iii)⇒(i). Let us take (xn) ∈ C0(X). This sequence permits us to de-
fine an operator U : `1 → X by U(αn) =

∑∞
n=1 αnxn for all (αn) ∈ `1.

The hypothesis (iii) guarantees that T ∗ ∈ Π1(Y ∗, X∗) and so U∗T ∗ ∈
Π1(Y ∗, `∞). The injectivity of `∞ makes that U∗T ∗ ∈ I1(Y ∗, `∞)
and thus TU ∈ I1(`1, Y ). Therefore TU admits a typical factoriza-
tion κY TU : `1

B−→ L∞(µ) i1−→ L1(µ) A−→ Y ∗∗, where µ is a finite
regular Borel measure on some compact Hausdorff space Ω, i1 is the
formal identity, and A and B are bounded linear operators. As i1 is
weak*-weak continuous and absolutely summing, it has a representing
measure m with bounded variation. A result due to Ryll-Nardzewski
[4] provides an L1(µ)-valued measure m̃ with bounded variation for
which rg m̃ = i1(BL∞(µ)). Then m1 = A ◦ m̃ is a Y ∗∗-valued measure
with bounded variation so that {κY Txn : n ∈ N} = {κY TUen : n ∈
N} = {Ai1Ben : n ∈ N} ⊂ C rg m1 for some constant C > 0. This
reveals that κY T ∈ Rbv(X,Y ∗∗). We use the same argument as that
of the bounded semivariation case to obtain T ∈ Rbv(X,Y ). ¤

Applying the above theorems we draw the following useful relation-
ship between the space R and the space Rbv.

Corollary. Let T ∈ L(X, Y ). Then the following statements are
equivalent.

(i) T ∈ R(X,Y ).
(ii) For any Banach space Z and any operator S ∈ I∗∞(Y,Z), we

have ST ∈ Rbv(X,Z).

Proof. (i)⇒(ii). We select any operator S ∈ I∗∞(Y,Z), where Z
is any Banach space. Let y1, · · · , yn ∈ Y be given. Choose a finite
sequence (αk)n

k=1 such that ‖(λk)n
k=1‖`n∞ = 1 and

∑n
k=1 λk‖Syk‖ =∑n

k=1 ‖Syk‖. Next choose z∗1 , · · · , z∗n ∈ BZ∗ so that 〈z∗k, Syk〉 = ‖Syk‖
for k = 1, · · · , n. Consider the composition of operators `n

∞
a−→ Y

S−→
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Z
b−→ `n

∞
U−→ `n

∞, where a(αk) =
∑n

k=1 αkyk for all (αk)n
k=1 ∈ `n

∞, bz =
(〈z∗k, z〉)n

k=1 for all z ∈ Z and U(αk) = (λkαk)n
k=1 for all (αk)n

k=1 ∈ `n
∞.

Notice that ‖a‖ = ‖(yk)‖weak
1 , ‖b‖ ≤ 1 and ı∞(U) ≤ 1. It follows that

n∑

k=1

‖Syk‖ =
n∑

k=1

λk〈z∗k, Syk〉 =
n∑

k=1

λk〈b∗ek, Saek〉 =
n∑

k=1

〈ek, UbSaek〉

= tr(UbSa) ≤ ı∗∞(S) ‖a‖ ‖b‖ ı∞(U) ≤ ı∗∞(S) ‖(yk)‖weak
1 .

As a result S ∈ Π1(Y, Z) with π1(S) ≤ ı∗∞(S). Now let us take
(xn) ∈ C0(X). The hypothesis (i) enables us to invoke theorem 1
to get that T ∈ Rc(X,Y ) and hence (Txn) ∈ Rc(Y ). According to
proposition 1.4 of [11], there exists an unconditionally convergent series∑∞

k=1 yk in Y such that {Txn : n ∈ N} ⊂ {∑∞
k=1 αkyk : ‖(αk)‖∞ ≤ 1}.

Therefore {STxn : n ∈ N} ⊂ {∑∞
k=1 αkSyk : ‖(αk)‖∞ ≤ 1}, and

furthermore
∑∞

k=1 ‖Syk‖ < ∞ because S ∈ Π1(Y,Z). This gives
that ST ∈ Rbvc(X, Z). We make use of theorem 2 to obtain that
ST ∈ Rbv(X,Z).
(ii)⇒(i). Let us take any S ∈ Π1(Y, `1). Suppose E and F are fi-
nite dimensional Banach spaces, and let a ∈ L(E, Y ), b ∈ L(`1, F )
,U ∈ L(F,E). From a result of Grothendieck [6] we get | tr(UbSa)| ≤
ı1(UbSa) which thanks to a theorem of Persson and Pietsch [10] lead
to | tr(UbSa)| ≤ π1(Sa) ı∞(Ub) ≤ π1(S) ‖a‖ ‖b‖ ı∞(U). It follows that
S ∈ I∗∞(Y, `1) and ı∗∞(S) ≤ π1(S). Then the hypothesis (ii) tells us
that ST ∈ Rbv(X, `1). Appealing to theorem 2 we have that ST ∈
Π1,∞,1(X, `1) and so (ST )∗ ∈ Π1(`∞, X∗). Writing (ST )∗en = x∗n,
we find

∑∞
n=1 ‖x∗n‖ < ∞, from which we drive that ST ∈ N (X, `1),

where ST (x) = (〈x∗n, x〉) for all x ∈ X. Thus we can define the oper-
ator T : Π1(Y, `1) → N (X, `1) assigning to every absolutely summing
operator S the nuclear operator ST . Suppose (Sn, SnT ) is a sequence
that converges to an element (S, R) in Π1(Y, `1) × N (X, `1), that is
limn→∞ π1(Sn − S) = 0 and limn→∞ ν(SnT −R) = 0. Then

π1(R− ST ) ≤ π1(R− SnT ) + π1(SnT − ST )

≤ ν(R− SnT ) + ‖T‖π1(Sn − S).

This yields that R = ST and so the graph of T is closed. The closed
graph theorem provides us with a constant C > 0 such that ν(ST ) ≤
C π1(S) for each S ∈ Π1(Y, `1). (∗)
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Now let (u∗i )
m
i=1 and (v∗j )n

j=1 be finite sequences in Y ∗ satisfying
∑m

i=1 |〈u∗i , y〉| ≤∑n
j=1 |〈v∗j , y〉| for all y ∈ Y . (∗∗)

We use these sequences to define operators A : Y → `m
1 and B : Y → `n

1

by Ay = (〈u∗i , y〉)m
i=1 for all y ∈ Y and By = (〈v∗j , y〉)n

j=1 for all y ∈ Y ,
respectively. Take any finite set {y1, · · · , yn} ⊂ Y . Then it follows
from condition (∗∗) that

n∑

k=1

‖Ayk‖ ≤
n∑

k=1

‖Byk‖ ≤ π1(B) · sup {
n∑

k=1

|〈y∗, yk〉| : ‖y∗‖ ≤ 1}.

and hence π1(A) ≤ π1(B). Note that ATx = (〈T ∗u∗i , x〉)m
i=1 for all

x ∈ X and AT ∈ N (X, `1). It takes an appeal to condition (∗) to see
that

m∑

i=1

‖T ∗u∗i ‖ = ν(AT ) ≤ C π1(A) ≤ C π1(B) ≤ C ν(B) = C

n∑

i=1

‖v∗i ‖.

We summon up theorem 1 to conclude that T ∈ R(X, Y ). ¤
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