• 제목/요약/키워드: character sums

검색결과 9건 처리시간 0.017초

ON THE GENERAL QUADRATIC GAUSS SUMS WEIGHTED BY CHARACTER SUMS OVER A SHORT INTERVAL

  • Zhang, Tianping
    • 대한수학회보
    • /
    • 제50권3호
    • /
    • pp.873-883
    • /
    • 2013
  • By using the analytic methods, the mean value of the general quadratic Gauss sums weighted by the first power mean of character sums over a short interval is investigated. Several sharp asymptotic formulae are obtained, which show that these sums enjoy good distributive properties. Moreover, interesting connections among them are established.

INVERSION OF L-FUNCTIONS, GENERAL KLOOSTERMAN SUMS WEIGHTED BY INCOMPLETE CHARACTER SUMS

  • Zhang, Xiaobeng;Liu, Huaning
    • 대한수학회지
    • /
    • 제47권5호
    • /
    • pp.947-965
    • /
    • 2010
  • The main purpose of this paper is using estimates for character sums and analytic methods to study the mean value involving the incomplete character sums, 2-th power mean of the inversion of Dirichlet L-function and general Kloosterman sums, and give four interesting asymptotic formulae for it.

GAUSS SUMS FOR U(2n + 1,$q^2$)

  • Kim, Dae-San
    • 대한수학회지
    • /
    • 제34권4호
    • /
    • pp.871-894
    • /
    • 1997
  • For a lifted nontrivial additive character $\lambda'$ and a multiplicative character $\chi$ of the finite field with $q^2$ elements, the 'Gauss' sums $\Sigma\lambda'$(tr $\omega$) over $\omega$ $\in$ SU(2n + 1, $q^2$) and $\Sigma\chi$(det $\omega$)$\lambda'$(tr $\omega$) over $\omega$ $\in$ U(2n + 1, $q^2$) are considered. We show that the first sum is a polynomial in q with coefficients involving certain new exponential sums and that the second one is a polynomial in q with coefficients involving powers of the usual twisted Kloosterman sums and the average (over all multiplicative characters of order dividing q-1) of the usual Gauss sums. As a consequence we can determine certain 'generalized Kloosterman sum over nonsingular Hermitian matrices' which were previously determined by J. H. Hodges only in the case that one of the two arguments is zero.

  • PDF

THE JACOBI SUMS OVER GALOIS RINGS AND ITS ABSOLUTE VALUES

  • Jang, Young Ho
    • 대한수학회지
    • /
    • 제57권3호
    • /
    • pp.571-583
    • /
    • 2020
  • The Galois ring R of characteristic pn having pmn elements is a finite extension of the ring of integers modulo pn, where p is a prime number and n, m are positive integers. In this paper, we develop the concepts of Jacobi sums over R and under the assumption that the generating additive character of R is trivial on maximal ideal of R, we obtain the basic relationship between Gauss sums and Jacobi sums, which allows us to determine the absolute value of the Jacobi sums.

Character Recognition Algorithm using Accumulation Mask

  • Yoo, Suk Won
    • International Journal of Advanced Culture Technology
    • /
    • 제6권2호
    • /
    • pp.123-128
    • /
    • 2018
  • Learning data is composed of 100 characters with 10 different fonts, and test data is composed of 10 characters with a new font that is not used for the learning data. In order to consider the variety of learning data with several different fonts, 10 learning masks are constructed by accumulating pixel values of same characters with 10 different fonts. This process eliminates minute difference of characters with different fonts. After finding maximum values of learning masks, test data is expanded by multiplying these maximum values to the test data. The algorithm calculates sum of differences of two corresponding pixel values of the expanded test data and the learning masks. The learning mask with the smallest value among these 10 calculated sums is selected as the result of the recognition process for the test data. The proposed algorithm can recognize various types of fonts, and the learning data can be modified easily by adding a new font. Also, the recognition process is easy to understand, and the algorithm makes satisfactory results for character recognition.

SOME SYMMETRY IDENTITIES FOR GENERALIZED TWISTED BERNOULLI POLYNOMIALS TWISTED BY UNRAMIFIED ROOTS OF UNITY

  • Kim, Dae San
    • 대한수학회보
    • /
    • 제52권2호
    • /
    • pp.603-618
    • /
    • 2015
  • We derive three identities of symmetry in two variables and eight in three variables related to generalized twisted Bernoulli polynomials and generalized twisted power sums, both of which are twisted by unramified roots of unity. The case of ramified roots of unity was treated previously. The derivations of identities are based on the p-adic integral expression, with respect to a measure introduced by Koblitz, of the generating function for the generalized twisted Bernoulli polynomials and the quotient of p-adic integrals that can be expressed as the exponential generating function for the generalized twisted power sums.

MEAN VALUES OF THE HOMOGENEOUS DEDEKIND SUMS

  • WANG, XIAOYING;YUE, XIAXIA
    • Korean Journal of Mathematics
    • /
    • 제23권4호
    • /
    • pp.571-590
    • /
    • 2015
  • Let a, b, q be integers with q > 0. The homogeneous Dedekind sum is dened by $$\Large S(a,b,q)={\sum_{r=1}^{q}}\(\({\frac{ar}{q}}\)\)\(\({\frac{br}{q}}\)\)$$, where $$\Large ((x))=\{x-[x]-{\frac{1}{2}},\text{ if x is not an integer},\\0,\hspace{75}\text{ if x is an integer.}$$ In this paper we study the mean value of S(a, b, q) by using mean value theorems of Dirichlet L-functions, and give some asymptotic formula.

ON THE DENOMINATOR OF DEDEKIND SUMS

  • Louboutin, Stephane R.
    • 대한수학회보
    • /
    • 제56권4호
    • /
    • pp.815-827
    • /
    • 2019
  • It is well known that the denominator of the Dedekind sum s(c, d) divides 2 gcd(d, 3)d and that no smaller denominator independent of c can be expected. In contrast, here we prove that we usually get a smaller denominator in S(H, d), the sum of the s(c, d)'s over all the c's in a subgroup H of order n > 1 in the multiplicative group $(\mathbb{Z}/d\mathbb{Z})^*$. First, we prove that for p > 3 a prime, the sum 2S(H, p) is a rational integer of the same parity as (p-1)/2. We give an application of this result to upper bounds on relative class numbers of imaginary abelian number fields of prime conductor. Finally, we give a general result on the denominator of S(H, d) for non necessarily prime d's. We show that its denominator is a divisor of some explicit divisor of 2d gcd(d, 3).