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GAUSS SUMS FOR U(2n +1,qg?%)

DAE SaN K

ABSTRACT. For alifted nontrivial additive character A’ and a multi-
plicative character x of the finite field with ¢ elements, the ‘Gauss’
sums Y A (trw) over w € SU(2n + 1,¢%) and 3~ x(det w)N (trw)
over w € U(2n+1,¢?) are considered. We show that the first sum is
a polynomial in ¢ with coefficients involving certain new exponential
sums and that the second one is a polynomial in ¢ with coefficients
involving powers of the usual twisted Kloosterman sums and the
average (over all multiplicative characters of order dividing ¢ —1) of
the usual Gauss sums. As a consequence we can determine certain
‘generalized Kloosterman sum over nonsingular Hermitian matrices’
which were previously determined by J. H. Hodges only in the case
that one of the two arguments is zero.

1. Introduction

Let A’ be the lifting of a nontrivial additive character A of F, to F.
(cf. (2.4)), and let x be a multiplicative character of F 2. Then we
consider the exponential sum

(1.1) Yo Nrw),

weSU (2n+1,q%)

where SU(2n+ 1, ¢%) is a special unitary group over F,» (cf. (2.9)) and
tr w is the trace of w. Also, we consider

(1.2) > xldetw)XN(trw),

wel(2n+1,q4?)
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where U(2n + 1,¢%) is a unitary group over Fg (cf. (2.5) and (2.7))
and det w is the determinant of w.

The main purpose of this paper is to find explicit expressions for
the sums (1.1) and (1.2). We will show that (1.1) is a polynomial in
q with coefficients involving certain exponential sums (cf. (5.1) and
(5.2)), which seem to be new. On the other hand, (1.2) is a polynomial
in q with coeflicients involving powers of the usual twisted Klooster-
man sums and the average (over all multiplicative characters of order
dividing g — 1) of the usual Gauss sums.

In [2], Hodges expressed certain exponential sums in terms of what
we call the ‘generalized Kloosterman sum over nonsingular Hermitian
matrices’ Kyerm (A, B), where A, B are t x t Hermitian matrices over
Fg2 (cf. (8.1)). Some of its general properties were investigated in
[2], and, for A or B zero, it was evaluated in [1]. However, they have
never been explicitly computed for both A and B nonzero. From a
corollary to the main theorem in [2] and Theorem 7.2, we will be able
to find an explicit expression for Kyerm 2n+1(a?C 71, C), where C is a
nonsingular Hermitian matrix ov: er Fg2 of size 2n+ 1 and a € F. On
the other hand, Kgerm 2,(a?C™", C) was obtainad in (6], where C isa
nonsingular Hermitian matrix over Fg . of size 2n and a is as before.

Similar sums for other classical groups over a finite field have been
considered and the results for these sums will appear in various places
(i3] - [7)-

Finally, we would like to state the main results of this paper. For
some notation, one is referred to the next section.

THEOREM A. The sum },,c syy(ant1,42) X (trw) in (1.1) equals

¢ QZ grTrt?) H Qf[(qﬂ' +(=1))

g% j=1
5= ?] l-1
D DI RN USRI o | (TS
=1 byt

where F.(X';a,b,c) is the exponential sum defined by (5.1) and (5.2),
and the innermost sum is over all integers j1,-- - , 1;_1 satisfying 21—1 <
J-1<g2 < - <p<n—-r+1
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THEOREM B. Thesum ZweU(2n+1,q2) x(det w)X (trw) in (1.2) equals

: 1 22
e T DILUCC Py
q-— =0
XD (=x(=1))7g# ") m [T@ +(-1))
r=0 9% j=1

nori?2

n—r4+2
3 ] -1
Z quK()\/’ Xq—l; 1,1: qz)n~r—21+2 Z H(q2jl,—4u N 1),
=1 A=t

{
X

where v Is a multiplicative character of F,2 of order ¢ — 1, G(x%?, X')
is the usual Gauss sum as in (2.10), K(N,x971;1,1: ¢?) is the twisted
Kloosterman sum defined in (2.11), and the innermost sum is over all
integers ji,--- ,J1—1 satisfying the same inequalities as in the above
Theorem A.

THEOREM C. Let a € Fy, and let C' be any nonsingular Hermitian
matrix over g2 of size 2n + 1. Then the following Kloosterman sum
over nonsingular Hermitian matrices (cf. (8.1)) is the same for any

such a C, and
KHerm,2n+1(aZC_17 C) = - Z Ag(tl"lﬂ),

weU(2n+1,q%)

so that it equals (-1) times the expression in Theorem B above with x
trivial, ' = A}, (cf. (2.3) and (2.4)).

The above Theorems A, B and C are respectively stated as Theorem
6.2, Theorem 7.2 and Theorem 8.1.

2. Preliminaries

In this section, we will fix some notations that will be used through-
out this paper, describe some basic groups and mention the g-binomial
theorem.

Let F, and F,2 denote respectively the finite field with g elements,
q = p® (p any prime, d a positive integer), and the quadratic extension
of Fy.
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The Frobenius automorphism 7 of F, is defined by
(2.1) o’ =i
Then, for o € F2,
tre , F,0 = + a’, Nqu JF, Q= ao
Also, for o € ]F(’;z, o /o and a/a” are respectively denoted by
(2.2) Q" Ja=a""}, aj/a” =al" .

Let A be an additive character of F,. Then A = A, for a unique
a € F,, where, for a € F,,

(2.3) Ao(@) = exp {%7; (a(n + (a@)P + - -+ - (aa)pdﬂl)} .

It is nontrivial if a # 0. For such a A, X' denotes the additive character
A lifted to Fg2. Thus

(2.4) N =2MXo tr]:;qz/];q .

Note that A’ is nontrivial if A is. Likewise, for a multiplicative character
¥ of Fy, the lifting of that to Fy2 is denoted by ¢’. So ¢’ = QZJONqug /F,-

Here tr A and det A denote respectively the trace and determinant
of A for a square matrix A, and "B = *(87;) for any matrix B = (83;;)
over Fp2 (cf. (2.1)), where the ‘¢’ indicates the transpose. We will say
that B is Hermitian if *B = B.

GL(n,q) denotes the group of all nonsingular n x n matrices with
entries in F,. Then

(2.5) Un+1,¢") ={w e GL2n+1,¢%) | "ww = J},
where

6 1, O

0 o0 1



Gauss sums for U(2n + 1,¢%) 875

Write w € U(2n + 1,¢%) as

A B e
w=|C D f|,
g h 1

where A, B, C, D areof n xn, e, fareof nx 1, g, h are of 1 x n, and
iisof 1 x 1. Then U(2n + 1,¢?) in (2.5) is also given by

U(2n+1,4¢%)
A B e *AC - "CA + "gg = 0,
= C D f|eGL(2n+1,4¢°%
g h i *BD + *DB + "hh = 0,

*AD+*CB + "gh =1, "ef + *fe-1i"1 = 1,
*Af +*Ce+*gi =0, *Bf + *De + *hi = 0

(2.7)
A B e A'B+B*A+e’e=0,
={|C D f|eGL@n+1,¢) . . .

A D+ B C+e*f=1,,9g"h+h"g+i" =1,
Ah+ B*g+ei" =0,C*h+D%+ fi"=0 |

P(2n + 1,4¢%) is the maximal parabolic subgroup of U(2n + 1,¢?)

defined by
(2.8)

P(2n +1,¢%)
{ 0 an ol | 1, o ||AeCHmD) iiT—l’}

0 *A= o0 1, 0
1lo »n 1 |IB+B+mR=0

(29)  SU@n+1,¢") = {weU@n+1,¢) | detw = 1},
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which is a subgroup of index ¢+ 1 in U(2n + 1, G?).
For a multiplicative character v of F, and an additive character \
of Fy, the Gauss sum G(1, A : ) = G(1, \) is defined by

(2.10) G A:q) =G, A) = Y ¢(a)(a)
a€Fy

With ¢, A just as above and for a, b € F,, the ‘twisted’ Kloosterman

sum

K\ ¢;a,b:q) = K(\v;a,b) is defined as

(2.11) KM\ v;a,b:q) = K(A 4 a,b) Z Y(a)M(aa + ba™1).
a€eFy

Further, if A is nontrivial, then usual Kloostermar: sum K (\;a,b : q) =

K (X;a,b) is given by

(2.12) K(Xa,b:q) = K(\ja,b) = Z Maa + ba™1).
a€Fy

For integers n, r with 0 < r < n, the g-bincmial coefficients are
defined as

r—1
n n-- . r— .
(213) IR G e
q  j=0
The order of the group GL(n, ) is given by
n-—1 n
(2.14) gn(a) = [J(¢" - H ¢ —1).
=0 =1
Then we have :
gn(Q) r(n—r) |:Tl:|
2.15 S LA |
(219) G (0)9:(0) ],

for integers n, r with 0 < r < n.
For z an indeterminate, n a nonnegative integer

(216) (l'; Q)n = (1 —117)(1 - xq)(]_ —_'L'q"'“l)'
Then the g-binomial theorem says

n n _ . (1") r_ .
210 Z‘;LL( )'¢*¥a" = ().

[y] denotes the greatest integer < y, for a real number y.
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3. Bruhat decomposition

In this section, we will discuss the Bruhat decomposition of U(2n +
1,¢%) with respect to the maximal parabolic subgroup P(2n + 1,¢?) of
U(2n+1,4°) (cf. (2.8)).

This decomposition (in fact, its slight variants {3.11) and (3.12)) will
play a key role in deriving Theorem 6.2 and Theorem 7.2. As the next
theorem about the decomposition can be proved by slightly modifying
the corresponding proof in [4], a proof for that will not be provided.
Instead, we demonstrate that this decomposition combined with the
g-binomial theorem yields a well-known formula for the order of the
group U(2n + 1, ¢%).

THEOREM 3.1. (a) There is a one-to-one correspondence

P(2n+1,¢*\U(2n + 1,¢%) — P'(n+1,¢*)\A

given by
A B e
P2n+1,4°)|C D f|+— P(n+1,q¢° [C D f],
. g h 1
g h
where

P(n+1,¢°) = {|:(cl Z] € GL(n+1,¢%

{ls 2]

matrices over F2 subject to the conditions (3.1) }

aeGL(n,¢*),b=0
Nr o /r,d =1 ’

C, D, f. g, h, i are respectively of

nxn,nxnnxl lxn 1lxn 1x1

in below, and the matrix is of full rank n + 1

C*D+ D*C+ f*f =0,
gh+ hig+ i =1,
C*h+D*g+ fi" = 0.
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(b) For given [i 1}3 {] € A, there exists a uniquer(0 <r <n), p’ €

P'(n+1,4%), p€ P(2n + 1,4¢?) such that

L, 00 0 0
p,[c lh) J;]p: 0 00 1,., O
g 000 0 1
(c)
(3.2) U2n +1,¢°) = [[ Po.P,

where P = P(2n + 1,¢°) and

0 0 1, 0 0
0 1,., O 0 0

(3.3) or=11 0 0 0 0| eU(n+1,q°)
0 0 0 1, O
0 0 0 0 1

Put
Q=Q(2n+1,¢°) = {w € P(2n +1,¢*) | detw = 1}
(3.4) A 0 0 1. B —*h} A€ GL(n,¢?),
={ 0 *a-! 0 0 1. 0 ’ L :
0 0 (detA)1]|0 h 1 |/ B+"B+"hh=0
(3.5)

QT =Q" (27‘L+1 *)={w e P(2n+ 1,¢%) | detw = -1}
0 I B =Rl A€ GL(n,g?), }
0 0 1, 0 ‘ N .
O —(det A)71 0 *h 1 B+"B+"hh=0
(cf. (

Then Q(2n +1,4?) is a subgroup of index g + 1 in P(2n +1,q%) and

(3.6) U2n+1,¢? H Po,Q.
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Write, for each 7(0 < r < n) and o, as in (3.3),

(3.7) A= Ar(q2) ={w e P(2n+ 1,q2) [ (/',nu)a,?1 € P(2n+ l,qz)},

(3.8) B, =B.(¢*)={weQ2n+1,¢%) | oywo, ! € P(2n+1,¢*)}.
Then B, is a subgroup of A, of index ¢ + 1 and
(3.9) | B\Q =] Ar\P|.

Expressing U(2n+1, ¢?) as a disjoint union of right cosets of P(2n +
1, ¢%), the decompositions in (3.2) and (3.6) can be rewritten as follows.

COROLLARY 3.2.

(3.10) U2n+1,¢%) = [ [ Po-(A-\P),
r=0

(3'11) U(2Tl + 1;q2) = ﬁ PUT(BT\Q)a
r==0

where P = P(2n + 1,¢%), and 0., Q, A,, B, are respectively as in
(3.3),(3.4),(3.7),(3.8).

Observing that det 0. = (—1)", we get from (3.11) the following
decomposition for SU(2n + 1, ¢?).

COROLLARY 3.3.
SU@n+1,¢°) = [[ Qor(B:\Q)
0<r<n

(3.12) T even
[IC [T @ o B\Q),
0<r<n
rodd
where Q@ = Q@ (2n + 1,¢?) is as in (3.5).

Write w € P(2n + 1,¢%) as

A 0 0
(3.13) w= |0 *A"l 0
0 0 i
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with

A Aw| o1 [En Fi
A= , A7 = ,
[Am AzzJ [Em Eoo
Bi1 B2
B= Ch=lhi hal.
[le 322J o hal

Here Aj;, Ajo, Aoy, and A,y are respectively of sizes r x r; 7 x (n —
7),(n—r)xr and (n —7) x (n - r), similarly for *A=1, B, and h; is
of 1 xr.

Then, by multiplying out, we see that orwo;tisin P(2n + 1, q°) if
and only if A11B11+ A12B1 =0, A12 =0, Ey; = 0, A11*hy + Agp*hy =
0, hy = 0 if and only if 413 = 0, By; = 0, k1 = 0. Moreover, since
B +*B + *hh = 0 in (3.13), we have By; = —*B;, and Bas + *Bosy +
*hghz = (. Hence

(3.15) | Ar(@) = (g + 1)g-(°)gn r(g?) g™+ D g7 (2n=37-2)
where g,,(¢?) is as in (2.14). Also,
(3.16) | P(2n+1,¢%) |= (¢ + 1)gn(g®)g" " 2.

From (2.15), (3.15) and (3.16), we get

(3.14)

(3.17) | A-(P)\P(2n +1,¢%) |= ¢"("+2) [” _
q2

This will be used later in Section 6 and 7. Also, from (2.14), (3.16)
and (3.17), we have

n

| P2n+1,6%) | Ax(¢*) 7 = @+ 1)@ [ (g% - 1)

(3.18) =1
3re2y(s) |
a0 7]
The decomposition in (3.10) yields
(3.19) [U@n+1,¢°) =3 | P(2n+1,¢*) || Ar(q) |7* .
r==0

Now, from (3.18) and (3.19) and applying the g-binomial theorem
(2.17) with © = —¢3, we get the following well-known formula (3.20)
for n odd. Although we provide a proof of that formula only for n odd,
it is true also for n even.
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THEOREM 3.4.

(3.20) | Un,d®) 1= ¢ T](@ - (-1)%)
i=1

Proof.

T

|U@n+1,¢%) |=(g+ 1) " [](¢¥ - 1)

j=1
~ Z [ ] q37‘
2n +n(q + 1) n H
an1 2n+1 ) } a
=) H (¢ — (~1)7).
J=1
O O

4. Several propositions

The following proposition can be proved analogously to the corre-
sponding Proposition 4.1 in [4].

PROPOSITION 4.1. Let A be a nontrivial additive character of F,
and let A be a nonsingular Hermitian matrix of size v with entries in
Fy2. Then we have

(41) > AwAy) = (-1)7¢

yElF(:;1

where ]FZ;I denotes the set of all r x 1 matrices over F .
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COROLLARY 4.2. Let A be a nontrivial additive character of F,.
For each positive integer r, let §), be the set of all r X r nonsmgulaf
Hermitian matrices over Fg2. Then we have

(4.2) ()= Y ACydy)

A€ Q-,- ye ]F;ZX 1

=(-1)"¢"I (& + (-1)%).

Jj=1

Proof. There is a transitive right action of GL(r, q %) on Q, given by
(A,2) = *zAz. So (4.2) can be written as, for a fixed 4 € ),

> > A=) A(zy)

z€U (r,g* )\GL(r,q?) ) yer

= U @N\GL(r,¢*) | Y AyAy).

yEF;;”
Now, the desired result follows from (2.14), (3.20) and (4.1). a

The following proposition can be shown by slightly modifying the
proof of Theorem 5.30 in [8].

PROPOSITION 4.3. Let A be a nontrivial additive character of F,,

a multiplicative character of F, and let v be a multiplicative character
of ¥y of order d = (n,q — 1). Then

d—1
(4.3) Y nla™Ae™) = 3" Gl )

a€Fy =0

where G(mp? | X) = G(ny?, X : q) is the usual Gauss sum as in (2.10).

The next proposition can be proved just like Proposition 4.5 in 5],
using the above proposition.
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PROPOSITION 4.4. Let X' be the nontrivial additive character A of
F, lifted to Fy2, and let x be a multiplicative character of F,2. Then

q—2
(4.4) 3 x(@)X (@) = — 3" G, ),
(21 ]:0

where the sum is over all a € Fp2 with Nqu JF,a =1 (i.e., over a €

U(1,¢%)),v is a multiplicative character of Fp of order ¢ — 1, and
G(x?, X)) = G(x¥?, N : q%) is the Gauss sum as in (2.10).

REMARKS 4.5. (1) As we noted in the proof of Proposition 4.5 in
(5],

3

(4.5) Z N(a) = Z Altr w),

acU(1,q?) weESO~(2,9)

where, for p > 2, a fixed element ¢ € F \]F;‘z, and 6, = [(1) _OE] ,

SO™(2,q) ={w € GL(2,q) | wéew = &, det w = 1}
:{ [Z bae] la,be IF‘q,a2 — b = 1}.

Here we may identify F. with F,(\/€).

(2) Assume now that 9 is a multiplicative character of I, of order g—1.

Then ¢’ = ¢ o Ny , /p, is a multiplicative character of F,: of order ¢ —1
q q

and (¢')’ = (¥7). So, with x trivial, (4.4) can be written as

q—2

1 .
> e S
a€lU(1,q%) 3=0
1 &2
=_ q—_—~ ZO G('(/)J,/\)2 (Davenport - Hasse).
J:

This was already noted in (4.13) of [5].
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5. Certain exponential sums

Let A’ be a nontrivial additive character \ of F q lifted to F2. For

a positive integer r and a,b,c < F,2, we define the exponential sum
E.(XN;a,b,c) as

(5.1)
F.(XN;a,b,c) := Z A'(aZaj+bZaj"l+cHa;-“l)
c11,~--,aTEIF:2 j=1 j=1 Jj=1
(cf. (2.2)).
Also, we put
(5.2) Fo(X;a,b,¢) == N(c).

Now, it is elementary to see that

D N(ad™! + bo) Fr(N;a,b,c877)
(5.3) s€F,
=F.1(XN;a,b,¢).

In the next section, we will reduce the sum in (1.1) to an expres-
sion involving S¢()\'; a, b, ¢), which is defined just in below and can be
expressed as a polynomial in q with coefficients involving exponential
sums in (5.1) (cf. Theorem 5.1).

With A’ as above, and for a positive integer ¢+ and a,b,c € Fpe, we
define Si(N;a,b,c) as

Si(XN;a,b,c)

(5.4) = Z Matr w+btr w™! + ¢(det w)™™1).
weGL(t,q%)

If ¢ = 0, then it is the Kloosterman sum Kgrt,q2)(XN;a,b) defined in
(4.3) of [3]. Using the decomposition (4.4) in [3], a recursive relation
for Kgr1,42)(X'; a,b) can be obtained (cf. (4.18) in [3]) provided that
a,b# 0 (it is trivial if a or b is zero).
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The same decomposition of GL(t,q?) mentioned just above can be

used in order to derive the following recursive relation : for ¢ > 2, a,be
]FX2 , c€Fp

Se(N;a,b,¢) =¢*7* Y " N(ad™! +88) S,-1(N;a,b, 6T
(5.5) SEF,
+ g (T - 1) S, (N a,b,c(a™1b)™ 1),
where we understand that, for a,b,c € Fge
(5.6) So(N;a,b,c) := N(c).

From the recursive relation in (5.5) and using (5.3), an explicit ex-
pression for (5.4) can be derived, by induction on ¢, in exactly the same
manner as in the proof of Theorem 4.3 in [3].

THEOREM 5.1. Let X' be the nontrivial additive character \ of F,
lifted to Fqz. Then, for integerst > 1,a,b € ]F ,¢ € Fg2, the exponen-
tial sum St(/\ a, b, c) defined in (5.4) is

(5.7)
52
St()\';a,b, C) :q(t+1)(t—2) Z qzth+2—2l()\,;a,b’ c((a—lb)7~1)l—1)
I=1

-1
<> J[@* -,
v==1

where F1.(X';a,b,c) is defined in (5.1) and (5.2), and the inner sum is
over all integers ji,--- , iy satisfying2l -1 < j_1 <-.- < j; <t+1.
Here we understand that the inner sum in (5.7) is 1 for | = 1.

REMARKS 5.2. (1) The inner sum in (5.7) is equivalently given by

-1
Z H(qzju - 1)3
v=1

where the sum runs over all integers ji,---, 71 satisfying 20 — 3 <
J1<t—1,2l-5<j; < J1—2,--,1 < g1 < Jieo — 2 (With the
understanding that jo =t + 1 for { = 2 ).

(2) (5.7) is valid also for ¢t = 0, in view of our definitions in (5.2) and
(5.6).
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6. SU(2n+1, q?) case
In this section, we will consider the sum in (1.1)
Z A (tr w)
weSU(2n+1,q92)

and find an explicit expression for this, where )\’ is the nontrivial ad-
ditive character A of F, lifted to F .
Using the decomposition in (3.12), the sum in (1.1) can be written

as
> IBAQI D N(tr wo,)
0<r<n weQ
(6'1) T even
+ > IBAQ| ) N(trway),
=S

where B, = B.(¢°?),Q =
respectively as in (3. ) (3

for each q € Q,
Z N (tr worq) = Z N (tr qua,)

Q2n+1,¢*),Q” = Q@ (2n +1,¢%),0, are
4), (3.5), (3.3). Here one should note that,

weQ wEQ
= Z N(tr wo,)
weQ
and ¢~ = Q.
Write w € @ (cf. (3.4)) as
A 0 0 1, B —*h
w= |0 *A7! 0 0 1, 0 |,

0 0 (det A)™1 0 k» 1

with A,*A™, B, h as in (3.14). Recall here that B 4+ *B + *hh = 0,
which is equivalent to

By; + "By + "hihy =0,
(6.2) Bos + *Byy + *hohg = 0,

By + *Bo1 + *hihe = 0.
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M x *
Now, wo,.is | * N * with
* * (det A)T!

0 Eo

An A12} [311 0 ],N:[O E12J.

For any 7(0 < r < n),

(6.3)
Z X (tr wao,.)

weEQ
= " N(tr A;1 By +tr AyaBay + tr Agg + tr Epp + (det A)71),

where the sum is over all 4 =

An A12] B - [311 B12} 5
Ay Az |’ Bz Bap |’
[h1 hy] subject to the conditions in (6.2).

For each fixed A, h, the subsum over B in (6.3) is

(64) Z)\’(tr AllBll + tr A12le).

where the sum is over all By;, Ba1, Bao subject to the first and second
coditions in (6.2). It is

(6.5) g™ > N(tr AuBu) > N (tr A12Bay),
B B2,

since the summand is independent of Bj,. The sum over By in (6.5)
is nonzero if and only if A;5 = 0, in which case it equals ¢?"(*~"™). On
the other hand, the sum over By; in (6.5) is nonzero if and only if A;;
is Hermitian, in which case it is q’"z)\(—hl A11*h1). To see this, we need
the following lemma whose proof we will omit (cf. Lemma 5.1 in [6]).

LEMMA 6.1. Let N be the nontrivial additive character \ of Fq
lifted to Fy2. Let c € Fg,a € Fy2. Then

(6.6) > X(ab) = {

gA(ac), ifa € Fy,

0, otherwise,
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where the sum is over all elements b € F,» with trg ,/p,b = c.

NOW, let All = (az‘j),Bu = (/‘igij),hl = [h11 e hlr} . Then the
condition By + *B11 + *h1h; = 0 is equivalent tc

(67) ,Bii + 6; - - Iihliv for 1 < 1 < 7
Bij + ;1- = —hl;hy;, forl<i<j<r.

Using these relations, it is not hard to see that

)\'(tr AllBll) = /\I(— Z o237 thj)A,(Z aiiﬁii)

x NS (e — o) 8j).

1<i<j<r

In view of (6.6), (6.7) and (6.8), the subsum over B;; in (6.5) is nonzero
if and only if a;; € Fy for 1 Sifgrandaij:o;i for1 <i<j<r,
i.e., Aj; is Hermitian. Moreover, in that case it is

N(= Y agihihT )M~ > auhiihly)
) =1

1<i<j<r

= ¢ M-h1A11"h1).

So far we have shown that the sum in (6.4) is nonzero if and only
. A11 0
fA=
: |:A21 Azz
that case it equals

:I with A;; nonsingular Hermitian. In addition, in

q('n——r)2+2r(n— !‘)+T2A(—h1 A11*hi)
:qn2 )\('—hl All*hl)-

A O En By A1—11 *
For such an A = [Am A22J , |:E21 Eﬂ} = [ 0 *Ag_gl and

(det A)TAl = (det A22)T*1.
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The sum in (6.3) can be written as

(6.9)

2
@ D D M=hiAn'hi) > N(tr Ags + tr A7) + (det Azg)TY)
A21,h2 A1y by A2z

=g P2 () Z A(—=h1A11%hy) Z N(tr A2z + tr Az + (det Agp)™™1),
Aiq1,hy A2z

where Ay, is over the set 2, of all r x nonsingular Hermitian matrices
over Fg2, hy € ]F;zxr, A2z € GL(n —r,4%). Thus (6.9) equals

(6.10) g" TAEDEg (NS, (V51,1.1),

where we note that the first sum in (6.9) is the same as a-(A) in (4.2)
and S;(X';a,b,c) is as in (5.4) and (5.6).
From (3.9), (3.17), (4.2), and (6.10), the first sum in (6.1) equals

210n Loetdn-—rp n ~ ; :
g e Z gzrn H)[r] H(q1+(~1)y)

(6.11) 0<r<n 9% j=1
T even

X S r(N;1,1,1).

On the other hand, glancing through the above argument, we see
that, for any (0 < r < n),

Z X(tr wo,.)

weR

is the same as (6.10) except that S,,_,(\;1,1,1) is now replaced by
Sn—r(N;1,1,—1). Thus the second sum in (6.1) is

n?4+2n fr(an—r n - ) j
— g T2 Z q? (4n—r+1) [TJ 2H(qa+(_1)1)
(612) O_<_rd§dn q° j=1

X Sn_r(N;1,1,-1).

Finally, from (6.11), (6.12) and using the explicit expression of
St(X'5a,b,¢) in (5.7), we get the following main result of this section.
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THEOREM 6.2. Let X' be the nontrivial additive character A of F,
lifted to F,2. Then the Gauss sum over SU(2n + 1, q?)

Z N(tr w)

weSU(2n+1,q92)

is given by
q2n2+n—2 Z(""l) r{r+3) [ } H
r=0 7=1
[ut_%]
x> P Fara2(N; 1L (-1)7)
=1

(-1
x Z H(quV_4V - 1)a
v=1

where the innermost sum is over all integers j,,--- ,ji.1 satisfying
A-1<j1<fio<---<h<n—r+1,and F.(N;a,b,c) is as in
(5.1) and (5.2).

7. U(2n+1, q2) case

Let  be a multiplicative character of F 2, and let A’ be the nontrivial
additive character A of I, lifted to F,2. Then we will consider the sum
n (1.2)
Z x(det w) X (tr w)

wel(2n+1,42%)

and find an explicit expression for this.
Using the decomposition in (3.11), the sum in (1.2) can be written
as

(7.1) Z x(=1)" | BA\Q | Z (det w) Nitr wo,.).

r=0 we P
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Write w € P = P(2n + 1,¢%) as in (3.13) with A,*A~}, B,k as in
(3.14). The inner sum in (7.1) is

Z XN (@)Y x((det A)'"T)N (tr Agz + tr Eao)

(7.2) Ak

X Z )\’(tr A1 By +tr A12321),
B

where 1 is over all ¢ € Fgp with Ny ,/r,i = 1 (ie, i € U(l,¢%),
A € GL(n,q?), and B,h are subject to the condition B + *B + *hh =
0. We saw in Section 6 that, for each fixed A,h, the sum over B in

(7.2) is nonzero if and only if A = [ﬁ” AO } with Aj; nonsingular
21 A2

Hermitian. Moreover, it is q"z)\(—hlAu*hl) in that case. Also, for
such an A, (det A)1"7 = (det Ag)'™" and Egy = *A5'. Thus (7.2)

equals
¢ Y xONGE) D Y A=hAnh)
1 Agq,hz Ar g
x > x((det Ag) "N (tr Agz + tr Ag))
(7.3) Az

=g PO a () 3 XN (@)

x Z x? 1 (det w)N (tr w — tr w™t),
weGL(n—r,g?)

where a,.()) is as in (4.2).
Combining (7.1) and (7.3), the sum in (1.2) is

g Zx(i),\’(i) ;X(-l)r | BAQ |
(7.4) i r=0
x @ T Ve, (N Kapm-ren (N, x 1L 1),

where in [6], for a nontrivial additive character A of Fy, a multiplica-
tive character of Fg, a,b, € Fy, Ko (t,q) (A, %; a,b) is defined to be

Kerp.g(M;a,b) = }: (det w) Matr w + btr w™)

7.5
( ) weGL(t,q)

An explicit expression for this was obtained in [6:.
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THEOREM 7.1. [6, Theorem 4.2] For integers t > 1, a,b € FX, the
twisted Kloosterman sum Karit,g) (A, ¥;a,b) defined in (7 5) is

KGL(t,q)(’\yw; a, b)
) (<5%]
= g2 (t=2)(+D) Z ¢(___a—1b)l—1qu()\1¢; a,b: g)tt2—2

-1
Z H(qjuh‘mj - 1)7
v=1

where K (A, ;a,b : q) is the usual twisted Kloosterman sum as in
(2.11), the inner sum is over all integers J1,*+* ,J1-1 satisfying®l —1 <
Jie1 S ji—2 <o < g1 <t + 1, and we agree that the inner sum in
(76) is 1 for 1 = 1.

(7.6)

Now, we are ready to get the main theorem of this section from
(4.4), (3.9), (3.17), (4.2), (7.6), and (7. 4).

THEOREM 7.2. Let x be a multiplicative character of Fpz, and let
X" be the nontrivial additive character \ of F, lifted to F e Then the
Gauss sum over U(2n + 1, ¢°%)

Z X (det w) X (tr w)

welU(2n+1,q2)
is given by

q—

2 —
q2n +n—2 Z X¢'J /

7=0

XZ 1) qzr(r+3) [T:|

@+ -1
9% j=1
’n. T‘i

I--1
x Z RN, X" 1;1,1:qz)"“r—?l'fzzI:[l(quu—4u__1),

where ) is a mu1t1p11cat1ve character of Fgz of order ¢—1,G(x9?, ') =
G(x¥?, N : ¢%) is the Gauss sum as in (2 10), K(N,x?7 11,1 : ¢%) is
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the twisted Kloosterman sum defined in (2.11), and the innermost sum
is over all integers jy,--- ,ji_1 satisfying 2l — 1 < ji_1 < ji_9 < -+ <
j1 S n—r+4+1.

8. Application to Hodges’ Kloosterman sum

In [2], the generalized Kloosterman sum over nonsingular Hermitian
matrices is defined as, for ¢ x ¢ Hermitian matrices A, B over F.

(8.1) Krerm, (A, B) = > Ai(tr (Ag+ Bg™1)),

g

where g runs over the set of all nonsingular Hermitian matrices over Fye
of size ¢t. Here A, is as in (2.3), and one should note that, for Hermitian
matrices C, D over Fg. of size t,tr CD € F,.

In Theorem 6 of [2], weset m =t =2n+1,A = B = J with J as
in (2.6), X = als,yy witha € Fy. Then we get the following identity

Z A(tr w) = —KHermant1(a?J 71, J).
welU(2n+1,q2)

This is summarized in the following.

THEOREM 8.1. For a € Fy, we have the identity:

Z A (tr w) = —KHETm‘gnH(can”l, J)
(8.2) wel (2n+1,q%)

= _KHerm,2n+1(azc—1, C),

where A, is as in (2.3) and C is any nonsingular Hermitian matrix over
Fg2 of size 2n + 1.

REMARKS 8.2. (1) The second identity in (8.2) is clear from the
definition of Kloosterman sum in (8.1).

(2) The whole discussion in [2] is valid even for p = 2 if the ‘conju-
gate’ of o in F,2 means a7. So here we don’t have to assume ¢ = p? is
a power of an odd prime.

Combining (8.2} and Theorem 7.2, we have the following result.
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THEOREM 8.2. Leta € Fy, and let C be any nonsingular Hermitian
matrix over F 2 of size 2n + 1. Then the following generalized Kloost-
erman sum over nonsingular Hermitian matrices is the same for any
such a C, and

- 2 v—1
K Herm 2n+1 (a' C ) C

an +n--2 q__lzG w] /\/ >

=0
1
T-H zr(r+3) |
x Z [ qzjlel ¢+ (-1)))
(25 -1
XY KNG L1y T T (g -,
l==1 v=1
where the innermost sum is over all integers ji,---,j;_1 satisfying

20-1< 511 < jig < -+ < 41 < n—7r+ 1,7 is a multiplicative
character of F 2 of order ¢ —1,G()7, X)) = G(¢7, N, : ¢°) is the Gauss
sum as in (2.10), and K(X,;1,1 : ¢?) is the Kloosterman sum as in
(2.12).
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