• Title/Summary/Keyword: channel-hot-carrier degradation

Search Result 48, Processing Time 0.021 seconds

A Study on the Effect of Plasma Deuterium Treatment on Reliability of Poly-Silicon Thin Film Transistors (중수소 프라즈마 처리가 다결정 실리콘 TFT의 안정성에 미치는 영향에 관한 연구)

  • Sohn Song Ho;Bae S. C.;Kim Donghwan
    • Korean Journal of Materials Research
    • /
    • v.14 no.7
    • /
    • pp.516-521
    • /
    • 2004
  • We applied a deuterium plasma treatment to the surface of polycrystalline silicon films using PECVD and observed the change with AFM, XRD, ET-IR, and SIMS measurement. A bias temperature stressing (BTS) test was carried out to evaluate the reliability of the thin-film transistors (TFT). TFTs with channel lengths as small as 2 ${\mu}m$ were electrically stressed fer up to 1000 sec at room temperature. From the parameter variation such as s-factor, leakage current and on/off ratio, we suggest that the deuterium plasma treatment suppress the hot carrier effect and improve the stability of TFTs.

Sensing Properties of Ga-doped ZnO Nanowire Gas Sensor

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.2
    • /
    • pp.78-81
    • /
    • 2015
  • Pure ZnO and ZnO nanowires doped with 3 wt.% Ga (‘3GZO’) were grown by pulsed laser deposition in a furnace system. The doping of Ga in ZnO nanowires was analyzed by observing the optical and chemical properties of the doped nanowires. The diameter and length of nanowires were under 200 nm and several ${\mu}m$, respectively. Changes of significant resistance were observed and the sensitivities of ZnO and 3GZO nanowires were compared. The sensitivities of ZnO and 3GZO nanowire sensors measured at 300℃ for 1 ppm of ethanol gas were 97% and 48%, respectively.

A New Asymmetric SOI Device Structure for High Current Drivability and Suppression of Degradation in Source-Drain Breakdown Voltage (전류구동 능력 향상과 항복전압 감소를 줄이기 위한 새로운 비대칭 SOI 소자)

  • 이원석;송영두;정승주;고봉균;곽계달
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.918-921
    • /
    • 1999
  • The breakdown voltage in fully depleted SOI N-MOSFET’s have been studied over a wide range of film thicknesses, channel doping, and channel lengths. An asynmmetric Source/Drain SOI technology is proposed, which having the advantages of Normal LDD SOI(Silicon-On-Insulator) for breakdown voltage and gives a high drivability of LDD SOI without sacrificings hot carrier immunity The two-dimensional simulations have been used to investigate the breakdown behavior in these device. It is found that the breakdown voltage(BVds) is almost same with high current drivability as that in Normal LDD SOI device structure.

  • PDF

The Characterization of Poly-Si Thin Film Transistor Crystallized by a New Alignment SLS Process

  • Lee, Sang-Jin;Yang, Joon-Young;Hwang, Kwang-Sik;Yang, Myoung-Su;Kang, In-Byeong
    • Journal of Information Display
    • /
    • v.8 no.4
    • /
    • pp.15-18
    • /
    • 2007
  • In this paper, we investigated the SLS process to control grain boundary(GB) location in TFT channel region, and it has been found to be applicable for locating the GB at the same location in the channel region of each TFT. We fabricated TFT by applying a new alignment SLS process and compared the TFT characteristics with a normal SLS method and the grain boundary location controlled SLS method. Also, we have analysed degradation phenomena under hot carrier stress conditions for n-type LDD MOSFETs.

The Characterization of Poly-Si Thin Film Transistor Crystallized by a New Alignment SLS Process

  • Lee, S.J.;Yang, J.Y.;Hwang, K.S.;Yang, M.S.;Kang, I.B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.16-19
    • /
    • 2007
  • In this paper, we present work that has been carried out using the SLS process to control grain boundary(GB) location in TFT channel region and it is possible to locate the GB at the same location in the channel region of each TFT. We fabricated TFT by applying a new alignment SLS process and compared the TFT characteristics with a normal SLS method and the grain boundary location controlled SLS method. Also, we have analyzed degradation phenomena under hot carrier stress conditions for n-type LDD MOSFETs.

  • PDF

Electrical Characteristics of Poly-Si TFT`s with Improved Degradation (열화가 억제된 다결정 실리콘 박막 트랜지스터의 전기적 특성)

  • 변문기;이제혁;백희원;김동진;김영호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.457-460
    • /
    • 1999
  • The effects of electrical positive stress on n-channel LDD and offset structured poly-Si TFT\`s have been systematically investigated in order to analyze the transfer curve\`s shift mechanism. It has been found that the LDD and offset regions behave as a series resistance that reduce the electric field near drain. Hot carrier effects are reduced because of these results. After electrical stress transfer curve’s shift and variation of the off-current are dependent upon the offset length rather than offset region’s doping concentration. Variation of the subthreshold slope is dependent upon offset region’s doping concentration as well as offset length.

  • PDF

Characterization of Gate Oxides with a Chlorine Incorporated $SiO_2/Si$ Interface (염소(Chlorine)가 도입된 $SiO_2/Si$ 계면을 가지는 게이트 산화막의 특성 분석)

  • Yu, Byoung-Gon;Lyu, Jong-Son;Roh, Tae-Moon;Nam, Kee-Soo
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.2
    • /
    • pp.188-198
    • /
    • 1993
  • We have developed a technique for growing thin oxides (6~10 nm) by the Last step TCA method. N-channel metal-oxide-semiconductor (n-MOS) capacitor and n-channel metal-oxide-semiconductor field-effect transistor's (MOSFET's) having a gate oxide with chlorine incorporated $SiO_2/Si$ interface have been analyzed by electrical measurements and physical methods, such as secondary ion mass spectrometry (SIMS) and electron spectroscopy for chemical analysis (ESCA). The gate oxide grown with the Last strp TCA method has good characteristics as follows: the electron mobility of the MOSFET's with the Last step TCA method was increased by about 7% and the defect density at the $SiO_2/Si$ interface decreases slightly compared with that with No TCA method. In reliability estimation, the breakdown field was 18 MV/cm, 0.6 MV/cm higher than that of the gate oxide with No TCA method, and the lifetime estimated by TDDB measurement was longer than 20 years. The device lifetime estimated from hot-carrier reliability was proven to be enhanced. As the results, the gate oxide having a $SiO_2/Si$ interface incorporated with chlorine has good characteristics. Our new technique of Last step TCA method may be used to improve the endurance and retention of MOSFET's and to alleviate the degradation of thin oxides in short-channel MOS devices.

  • PDF

A Research About P-type Polycrystalline Silicon Thin Film Transistors of Low Temperature with Metal Gate Electrode and High Temperature with Gate Poly Silicon (실리콘 게이트전극을 갖는 고온소자와 금속 게이트전극을 갖는 P형 저온 다결정 실리콘 박막 트랜지스터의 전기특성 비교 연구)

  • Lee, Jin-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.433-439
    • /
    • 2011
  • Poly Si TFTs (poly silicon thin film transistors) with p channel those are annealed HT (high temperature) with gate poly crystalline silicon and LT (low temperature) with metal gate electrode were fabricated on quartz substrate using the analyzed data and compared according to the activated grade silicon thin films and the size of device channel. The electrical characteristics of HT poly-Si TFTs increased those are the on current, electron mobility and decrease threshold voltage by the quality of particles of active thin films annealed at high temperature. But the on/off current ratio reduced by increase of the off current depend on the hot carrier applied to high gate voltage. Even though the size of the particles annealed at low temperature are bigger than HT poly-Si TFTs due to defect in the activated grade poly crystal silicon and the grain boundary, the characteristics of LT poly-Si TFTs were investigated deterioration phenomena those are decrease the electric off current, electron mobility and increase threshold voltage. The results of transconductance show that slope depend on the quality of particles and the amplitude depend on the size of the active silicon particles.