• 제목/요약/키워드: channel layers

검색결과 311건 처리시간 0.032초

대각선배선을 사용한 4층 채널배선에 관한 연구 (A new four-layer channel router using the diagonal routing)

  • 이병호
    • 전자공학회논문지C
    • /
    • 제34C권7호
    • /
    • pp.9-17
    • /
    • 1997
  • This paper proposes a routing model based on the HVHD for four-layer routing problems. Differing from the HVHV and HVHH models, the proposed HVHD model permits diagonal routing on the fourth laye rwith a grid of 45.deg., 90.deg. and 135.deg. directions. The developed algorithm which uses a channel-graph including weights routes a layer using diagonal model and the othe rthree layers using HVH model. Applications to several benchmark examples verify that approximately 10~25 percent reduction of channel density can be achieved compared to the conventional four-layer channel routing algorithms.

  • PDF

단일채널 Strained Si/SiGe 구조와 이중채널 Strained Si/SiGe 구조의 이동도 특성 비교 (Comparison of Hole Mobility Characteristics of Single Channel and Dual Channel Si/SiGe Structure)

  • 정종완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.113-114
    • /
    • 2007
  • Hole mobility characteristics of single surface channel and dual channel Si/SiGe structure are compared, where the former one consists of a relaxed SiGe buffer layer and a tensile strained Si layer on top, and for dual channel structure a compressively strained SiGe layer is inserted between them. Due to the difference of hole mobility enhancement factors of layers between them, hole mobility characteristics with respect to the Si cap thickness shows the opposite tend. Hole mobility increases with thicker Si cap for single channel structure, whereas it decreases with thicker Si cap for dual channel structure.

  • PDF

TFT 소자에 응용하기 위한 ALD에 의해 성장된 ZnO channeal layer의 두께에 대한 영향

  • 안철현;우창호;황수연;이정용;조형균
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.41-41
    • /
    • 2009
  • We utilized atomic layer deposition (ALD) for the growth of the ZnO channel layers in the oxide thin-film-transistors (TFTs) with a bottom-gate structure using a $SiO_2/p-Si$ substrate. For fundamental study, the effect of the channel thickness and thermal treatment on the TFT performance was investigated. The growth modes for the ALD grown ZnO layer changed from island growth to layer-by-layer growth at thicknesses of > 7.5 nm with highly resistive properties. A channel thickness of 17 nm resulted in the good TFT behavior with an onloff current ratio of > $10^6$ and a field effect mobility of 2.9 without the need for thermal annealing. However, further increases in the channel thickness resulted in a deterioration of the TFT performance or no saturation. The ALD grown ZnO layers showed reduced electrical resistivity and carrier density after thermal treatment in oxygen.

  • PDF

$\delta$도핑과 SiGe을 이용한 p 채널 MESFET의 포화 전류 증가 (Enhancement of Saturation Current of a p-channel MESFET using SiGe and $\delta$-dopend Layers)

  • 이찬호;김동명
    • 전자공학회논문지D
    • /
    • 제36D권4호
    • /
    • pp.86-92
    • /
    • 1999
  • SiGe을 이용한 p형 전계 효과 트랜지스터의 전류 구동 능력 향상을 위하여 이중 δ도핑층을 이용한 MESFET을 설계하고 시뮬레이션을 통하여 전기적 특성의 개선을 확인하였다. 두 δ도핑층 사이의 도핑 농도가 낮은 분리층에 SiGe층을 위치시키면 양자 우물이 형성되어 δ도핑층에서 넘쳐 나온 정공이 Si 채널의 경우보다 더 많아져 전류 구동 능력이 크게 향상된다. δ도핑층 사이의 SiGe층의 두께는 0∼300Å, Ge 구성비는 0∼30%의 범위에서 변화시켜 SiGe 두께 200Å, Ge 구성비 30%일 때 이중 δ도핑 Si 채널 MESFET에 비해 최대 45% 이상 개선될 수 있음을 확인하였다.

  • PDF

Surface Morphologies and Internal Fine Structures of Bast Fibers

  • Wang H. M.;Wang X.
    • Fibers and Polymers
    • /
    • 제6권1호
    • /
    • pp.6-12
    • /
    • 2005
  • Fiber surface morphologies and associated internal structures are closely related to its properties. Unlike other fibers including cotton, bast fibers possess transverse nodes and fissures in cross-sectional and longitudinal directions. Their morphologies and associated internal structures were anatomically examined under the scanning electron microscope. The results showed that the morphologies of the nodes and the fissures of bast fibers varied depending on the construction of the inner fibril cellular layers. The transverse nodes and fissures were formed by the folding and spiralling of the cellular layers during plant growth. The dimensions of nodes and fissures were determined by the dislocations of the cellular layers. There were also many longitudinal fissures in bast fibers. Some deep longitudinal fissures even opened the fiber lumen for a short way along the fiber. In addition, the lumen channel of the bast fibers could be disturbed or disrupted by the nodes and the spi­rals of the internal cellular layers. The existence of the transverse nodes and fissures in the bast fibers could degrade the fiber mechanical properties, whereas the longitudinal fissures may contribute to the very rapid moisture absorption and desorption.

Investigation on the flexural behaviour of ferrocement pipes and roof panels subjected to bending moment

  • Alnuaimi, A.S.;Hago, A.W.;Al-Jabri, K.S.;Al-Saidy, A.H.
    • Structural Engineering and Mechanics
    • /
    • 제33권4호
    • /
    • pp.503-527
    • /
    • 2009
  • This paper presents experimental results on the behaviour and ultimate load of fifteen pipes and six roof panels made of ferrocement. Additional results from three roof panels, carried out by others, are also compared with this research results. OPC cement, natural sand and galvanised iron wire mesh were used for the construction of 20 mm thick specimens. The pipe length was 2 m and roof panel length was 2.1 m. The main variables studied were the number of wire mesh layers which were 1, 2, 3, 4 and 6 layers, the inner pipe diameter which were 105, 210 and 315 mm, cross sectional shape of the panel which were channel and box sections and the depth of the edge beam which were 95 mm and 50 mm. All specimens were simply supported and tested for pure bending with test span of 600 mm at mid-span. Tests revealed that increasing the number of wire mesh layers increases the flexural strength and stiffness. Increasing the pipe diameter or depth of edge beam of the panel increases the cracking and ultimate moments. The change in the pipe diameter led to larger effect on ultimate moment than the effect of change in the number of wire mesh layers. The box section showed behaviour and strength similar to that of the channel with same depth and number of wire mesh layers.

감압화학증착법으로 성장된 실리콘-게르마늄 반도체 에피층에서 붕소의 이차원 도핑 특성 (Two Dimensional Boron Doping Properties in SiGe Semiconductor Epitaxial Layers Grown by Reduced Pressure Chemical Vapor Deposition)

  • 심규환
    • 한국전기전자재료학회논문지
    • /
    • 제17권12호
    • /
    • pp.1301-1307
    • /
    • 2004
  • Reduced pressure chemical vapor deposition(RPCYD) technology has been investigated for the growth of SiGe epitaxial films with two dimensional in-situ doped boron impurities. The two dimensional $\delta$-doped impurities can supply high mobility carriers into the channel of SiGe heterostructure MOSFETs(HMOS). Process parameters including substrate temperature, flow rate of dopant gas, and structure of epitaxial layers presented significant influence on the shape of two dimensional dopant distribution. Weak bonds of germanium hydrides could promote high incorporation efficiency of boron atoms on film surface. Meanwhile the negligible diffusion coefficient in SiGe prohibits the dispersion of boron atoms: that is, very sharp, well defined two-dimensional doping could be obtained within a few atomic layers. Peak concentration and full-width-at-half-maximum of boron profiles in SiGe could be achieved in the range of 10$^{18}$ -10$^{20}$ cm$^{-3}$ and below 5 nm, respectively. These experimental results suggest that the present method is particularly suitable for HMOS devices requiring a high-precision channel for superior performance in terms of operation speed and noise levels to the present conventional CMOS technology.

체크밸브가 달린 열공압 방식의 PDMS-유리마이크로 펌프에 관한 연구 (A Study About PDMS-Glass Based Thermopneumatic Micropump Integrated with Check Valve)

  • 고용준;조웅;안유민
    • 대한기계학회논문집A
    • /
    • 제32권9호
    • /
    • pp.720-727
    • /
    • 2008
  • Microfluidic single chip integrating thermopneumatic micropump and micro check valve are developed. The micropump and micorvalve are made of biocompatible materials, glass and PDMS, so as to be applicable to the biochip. By using the passive-type check valve, backward flow and fluid leakage are blocked and flow control is stable and precise. The chip is composed of three PDMS layers and a glass substrate. In the chip, flow channel and pump chamber were made on the PDMS layers by the replica molding technique and pump heater was made on the glass substrate by Cr/Au deposition. Diameter of the pump chamber is 7 mm and the width and depth of the channel are 200 and $180{\mu}m$, respectively. The PDMS layers chip and the heater deposited glass chip are combined by a jig and a clamp for pumping operation, and they are separable so that PDMS chip is used as a disposable but the heater chip is able to be used repeatedly. Pumping performance was simulated by CFD software and investigated experimentally. The performance was the best when the duty ratio of the applied voltage to the heater was 33%.

Characteristics of Stability and Intensity of Vertical Transfer in the Western Channel of the Korea Strait

  • Chung, Jong Yul
    • 한국해양학회지
    • /
    • 제10권2호
    • /
    • pp.57-66
    • /
    • 1975
  • Structure of thermocline, characteristics of stability and intensity of vertical transfer have been studied with hourly oceanographic data in each layers on Line 207 from 1968 to 1969. It is found that a typical thermocline is formed at depths of 10 to 50 meters in summer and early autumn and its core is located near depths of 25 meters. The maximum diffusion coefficient of vertical turbulent is found to be 140$\textrm{cm}^2$/sec at the surface layer(i.e., 0-10 meters), while the minimum is 5$\textrm{cm}^2$/sec at depths of 25 meters, consistent with characteristics of stability and structure of thermocline layers. Our computed diffusion coefficient and stability indicate that the mixing hardly takes place below depths of 80 meters during summer and early autumn, but for the rest of the season mixing could move up to the depth of 50 meters. It appears that the Western Channel of the Korea Strait consist of three different water masses during summer and autumn, and for the rest of the season, two kinds are present.

  • PDF

Theoretical Study of Electron Mobility in Double-Gate Field Effect Transistors with Multilayer (strained-)Si/SiGe Channel

  • Walczak, Jakub;Majkusiak, Bogdan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제8권3호
    • /
    • pp.264-275
    • /
    • 2008
  • Electron mobility has been investigated theoretically in undoped double-gate (DG) MOSFETs of different channel architectures: a relaxed-Si DG SOI, a strained-Si (sSi) DG SSOI (strained-Si-on-insulator, containing no SiGe layer), and a strained-Si DG SGOI (strained-Si-on-SiGe-on-insulator, containing a SiGe layer) at 300K. Electron mobility in the DG SSOI device exhibits high enhancement relative to the DG SOI. In the DG SGOI devices the mobility is strongly suppressed by the confinement of electrons in much narrower strained-Si layers, as well as by the alloy scattering within the SiGe layer. As a consequence, in the DG SGOI devices with thinnest strained-Si layers the electron mobility may drop below the level of the relaxed DG SOI and the mobility enhancement expected from the strained-Si devices may be lost.