Browse > Article
http://dx.doi.org/10.4313/JKEM.2004.17.12.1301

Two Dimensional Boron Doping Properties in SiGe Semiconductor Epitaxial Layers Grown by Reduced Pressure Chemical Vapor Deposition  

Shim, Kyu-Hwan (전북대학교 반도체물성연구소 반도체과학기술학과)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.17, no.12, 2004 , pp. 1301-1307 More about this Journal
Abstract
Reduced pressure chemical vapor deposition(RPCYD) technology has been investigated for the growth of SiGe epitaxial films with two dimensional in-situ doped boron impurities. The two dimensional $\delta$-doped impurities can supply high mobility carriers into the channel of SiGe heterostructure MOSFETs(HMOS). Process parameters including substrate temperature, flow rate of dopant gas, and structure of epitaxial layers presented significant influence on the shape of two dimensional dopant distribution. Weak bonds of germanium hydrides could promote high incorporation efficiency of boron atoms on film surface. Meanwhile the negligible diffusion coefficient in SiGe prohibits the dispersion of boron atoms: that is, very sharp, well defined two-dimensional doping could be obtained within a few atomic layers. Peak concentration and full-width-at-half-maximum of boron profiles in SiGe could be achieved in the range of 10$^{18}$ -10$^{20}$ cm$^{-3}$ and below 5 nm, respectively. These experimental results suggest that the present method is particularly suitable for HMOS devices requiring a high-precision channel for superior performance in terms of operation speed and noise levels to the present conventional CMOS technology.
Keywords
$\delta$-Doping; Reduced pressure chemical vapor deposition; SiGe; HMOS; RF-CMOS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 송영주, 현영철, 김상훈, 이영식, 이내응, 강진영, 조경익, 심규환, '저온 래디컬 산화법에 의한 고품질 초박막 게이트 산화막의 성장과 이를 이용한 고성능 실리콘-게르마늄 이종구조 CMOS의 제작', 16권, 9호, p.765, 2003
2 A. Portavoce, P. Gas, I. Berbezier, A. Ronda, J. S. Christensen, and B. Svensson, 'Lattice Diffusion and Surface Segregation of B During Growth of SiGe Heterostructures by Molecular Beam Epitaxy', J. Appl. Phys., Vol. 96, No. 6, p. 3158, 2004   DOI   ScienceOn
3 국가기술지도위원회, NTRM, 2002
4 김영수, 'SiGe 반도체 기술 동향 분석', 한국과학기술정보연구원, 기술동향분석보고서, 2003
5 Y. J. Song, K. H. Shim, J. Y. Kang, and K. I. Cho, 'DC and RF Characteristics of SiGe pMOSFETs: Enhanced Operation Speed and Low 1/f Noise', ETRI Journal, Vol. 25, No. 3, p. 203, 2003   DOI   ScienceOn
6 K. H. Shim, Y. J. Song, and J. Y. Kang, 'High Performance SiGe pHMOS using Reduced Pressure CVD', Solid-state Technology, p. 51, 2004
7 Y-J. Song, J-W. Lim, J-Y. Kang, and K-H. Shim, 'High Transconductance Modulation-doped SiGe pMOSFETs by RPCVD', Electronics Letters, Vol. 38, No. 23, p. 1497, 2002   DOI   ScienceOn
8 S. L. Wu, P. W. Chen, S. J. Chang, S. Koh, and Y. Shiraki, 'Influence of Delta-doping Position on the Characteristics of SiGe-Si DCFETs', IEEE Electron Device Lett., Vol. 25, No.7, p. 477, 2004.   DOI   ScienceOn
9 E. Kasper and K. Lyutovich, 'Properties of Silicon Germanium and SiGe: Carbon', INSPEC, p. 327, 2000