• Title/Summary/Keyword: ceria

Search Result 232, Processing Time 0.038 seconds

Dependence of Nanotopography Impact on Fumed Silica and Ceria Slurry Added with Surfactant for Shallow Trench Isolation Chemical Mechanical Polishing

  • Cho, Kyu-Chul;Jeon, Hyeong-Tag;Park, Jea-Gun
    • Korean Journal of Materials Research
    • /
    • v.16 no.5
    • /
    • pp.308-311
    • /
    • 2006
  • The purpose of this study is to investigate the difference of the wafer nanotopography impact on the oxide-film thickness variation between the STI CMP using ceria slurry and STI CMP using fumed silica slurry. The nanotopography impact on the oxide-film thickness variation after STI CMP using ceria slurry is 2.8 times higher than that after STI CMP using fumed silica slurry. It is attributed that the STI CMP using ceria slurry follows non-Prestonian polishing behavior while that using fumed silica slurry follows Prestonian polishing behavior.

Synthesis and Characterization of Covalently Cross-Linked SPEEK/Cs-substituted MoSiA/Ceria Composite Membranes with MoSiA for Water Electrolysis (MoSiA를 이용한 수전해용 공유가교 SPEEK/Cs-MoSiA/Ceria복합막의 제조 및 성능 연구)

  • SEO, HYUN;SONG, YU-RI;OH, YUN-SUN;MOON, SANG-BONG;CHUNG, JANG-HOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.524-531
    • /
    • 2015
  • To improve the electrochemical and mechanical characteristics, engineering plastic of the sulfonated polyether ether ketone (SPEEK) as polymer matrix was prepared in the sulfonation reaction of polyether ether ketone (PEEK). The SPEEK organic-inorganic blended composite membranes were prepared by sol-gel casting method. It was loaded with the highly dispersed ceria and cesium-substituted molybdosilicic acid (Cs-MoSiA) and 1,4-diiodobutane which was cross-linking agent contents of $10{\mu}L$. Cs-MoSiA was added to increase proton conductivity. Ceria ($CeO_2$) was used as a free radical scavenger which degrade the membrane in polymer electrolyte membrane water elctrolysis (PEMWE). In conclusion, CL-SPEEK/Cs-MoSiA/Ceria 1% composite membrane showed high proton conductivity 0.2104 S/cm at $25^{\circ}C$ which was better than Nafion 117 membrane.

Study of Characteristic of Covalent Cross-linked SPEEK/Silane 4wt%/Cs-substituted MoPA/Ceria hybrid Membrane for Water Electrolysis (Ceria 첨가에 따른 수전해용 공유가교 CL-SPEEK/Silane 4wt%/Cs-MoPA/Ceria 복합막의 특성 연구)

  • Oh, Seunghee;Park, Daeyong;Hwang, Sungha;Yoon, Daejin;Oh, Yunsun;Moon, Sangbong;Chung, Janghoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.6
    • /
    • pp.561-569
    • /
    • 2014
  • Ceria ($CeO_2$) was used to increase the durability of the membrane in the polymer electrolyte membrane water electrolysis (PEMWE) circumstance. The sulfonated polyether ether ketone (SPEEK) as polymer matrix was prepared in the sulfonation reaction of polyether ether ketone (PEEK) to improve electrochemical characteristics. After sulfonation reaction, the organic-inorganic blended composite membranes were prepared by means of sol-gel casting method with loading the highly dispersed $CeO_2$ and Cs-substituted molybdophosphoric acid (Cs-MoPA) with cross-linking agent (tetrapropyl orthosilicate). Consequently, the composite membrane CL-SPEEK/Silane 4wt%/Cs-MoPA/Ceria(1%) showed the improved characteristics such as 82% of water content, 0.11136 S/cm of proton conductivity at $80^{\circ}C$, 55.50 MPa of tensile strength and 4.37% of breeding out of MoPA.

Research of Characterization of Covalently Cross-linked SPEEK/Cs-Substituted MoPA/Ceria 1wt% Composite Membrane for Water Electrolysis (Cs 치환에 따른 수전해용 공유가교 SPEEK/Cs(n)-MoPA/Ceria 1%(n = 1~3) 복합막의 특성 연구)

  • Park, Daeyoung;Hwang, Sungha;Oh, Seunghee;Yoon, Daejin;Kang, Ansoo;Moon, Sangbong;Chung, Janghoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • Ceria ($CeO_2$) was used to scavenge free radicals which attack the membrane in the polymer electrolyte membrane water electrolysis (PEMWE) circumstance and to increase the duration of the membrane. In order to improve the electrochemical, mechanical and electrocatalytic characteristics, engineering plastic of the sulfonated polyether ether ketone (SPEEK) as polymer matrix was prepared in the sulfonation reaction of polyether ether ketone (PEEK) and the organic-inorganic blended composite membranes were prepared by sol-gel casting method with loading the highly dispersed ceria and cesium-substituted phophomolybdic acid(Cs-MoPA) with cross-linking agent contents of 0.01mL. In conclusion, CL-SPEEK/$Cs_{(2.5)}$-MoPA/ceria(1%) membrane showed the optimum results such as 0.1095S/cm of proton conductivity at $80^{\circ}C$, 2.906meq./g-dry-membrane of ion exchange capacity and mechanical characteristics, and 49.73MPa of tensile strength which were better than Nafion 117 membrane.

The Preparation and Characteristics of Covalently Cross-Linked SPEEK/Cs-TPA/Ceria Composite Membranes for Water Electrolysis (수전해용 공유가교 SPEEK/Cs-TPA/Ceria 복합막의 제조 및 특성 연구)

  • Song, Minah;Ha, Sungin;Park, Deayong;Ryu, Cheolhwi;Moon, Sangbong;Kang, Ansoo;Chung, Janghoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.437-447
    • /
    • 2012
  • Ceria ($CeO_2$) was used to scavenge free radicals which attack the membrane in the polymer electrolyte membrane water electrolysis (PEMWE) circumstance and to increase the duration of the membrane. In order to improve the electrochemical, mechanical and electrocatalytic characteristics, engineering plastic of the sulfonated polyether ether ketone (SPEEK) as polymer matrix was prepared in the sulfonation reaction of polyether ether ketone (PEEK) and the organic-inorganic blended composite membranes were prepared by sol-gel casting method with loading the highly dispersed ceria and cesium-substituted tungstophosphoric acid (Cs-TPA) with cross-linking agent contents of 0.01 mL. In conclusion, CL-SPEEK/Cs-TPA/ceria (1%) membrane showed the optimum results such as 0.130 S/cm of proton conductivity at $80^{\circ}C$, 2.324 meq./g-dry-membrane of ion exchange capacity and mechanical characteristics, and 65.03 MPa of tensile strength which were better than Nafion 117 membrane.

Theoretical Investigation of Water Adsorption Chemistry of CeO2(111) Surfaces by Density Functional Theory (전자밀도함수이론을 이용한 세륨 산화물의 (111) 표면에서 일어나는 물 흡착 과정 분석)

  • Choi, Hyuk;Kang, Eunji;Kim, Hyun You
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.267-271
    • /
    • 2020
  • Cerium oxide (ceria, CeO2) is one of the most wide-spread oxide supporting materials for the precious metal nanoparticle class of heterogeneous catalysts. Because ceria can store and release oxygen ions, it is an essential catalytic component for various oxidation reactions such as CO oxidation (2CO + O2 2CO2). Moreover, reduced ceria is known to be reactive for water activation, which is a critical step for activation of water-gas shift reaction (CO + H2O → H2 + CO2). Here, we apply van der Waals-corrected density functional theory (DFT) calculations combined with U correction to study the mechanism of water chemisorption on CeO2(111) surfaces. A stoichiometric CeO2(111) and a defected CeO2(111) surface showed different water adsorption chemistry, suggesting that defected CeO2 surfaces with oxygen vacancies are responsible for water binding and activation. An appropriate level of water-ceria chemisorption energy is deduced by vdW-corrected non-local correlation coupled with the optB86b exchange functional, whereas the conventional PBE functional describes weaker water-ceria interactions, which are insufficient to stabilize (chemisorb) water on the ceria surfaces.