DOI QR코드

DOI QR Code

Research of Characterization of Covalently Cross-linked SPEEK/Cs-Substituted MoPA/Ceria 1wt% Composite Membrane for Water Electrolysis

Cs 치환에 따른 수전해용 공유가교 SPEEK/Cs(n)-MoPA/Ceria 1%(n = 1~3) 복합막의 특성 연구

  • Received : 2013.11.22
  • Accepted : 2014.02.28
  • Published : 2014.02.28

Abstract

Ceria ($CeO_2$) was used to scavenge free radicals which attack the membrane in the polymer electrolyte membrane water electrolysis (PEMWE) circumstance and to increase the duration of the membrane. In order to improve the electrochemical, mechanical and electrocatalytic characteristics, engineering plastic of the sulfonated polyether ether ketone (SPEEK) as polymer matrix was prepared in the sulfonation reaction of polyether ether ketone (PEEK) and the organic-inorganic blended composite membranes were prepared by sol-gel casting method with loading the highly dispersed ceria and cesium-substituted phophomolybdic acid(Cs-MoPA) with cross-linking agent contents of 0.01mL. In conclusion, CL-SPEEK/$Cs_{(2.5)}$-MoPA/ceria(1%) membrane showed the optimum results such as 0.1095S/cm of proton conductivity at $80^{\circ}C$, 2.906meq./g-dry-membrane of ion exchange capacity and mechanical characteristics, and 49.73MPa of tensile strength which were better than Nafion 117 membrane.

Keywords

References

  1. Asier Gon i-Urtiaga, Dimitrios Presvytes, Keith Scott, "Solid acids as electrolyte materials for proton exchange membrane (PEM) electrolysis: Review", Int. J. Hydrogen Energy, Vol. 37, 2012, pp. 3358-3372. https://doi.org/10.1016/j.ijhydene.2011.09.152
  2. Min-Ah Song, Sung-In Ha, Dea-Young Park, Cheol-Hwi Ryu, Sang-Bong Moon, An-Soo Kang, Jang-Hoon Chung, "The Preparation and Characteristics of Covalently Cross-Linked SPEEK/ Cs-TPA/Ceria Composite Membranes for Water Electrolysis", Trans. of the Korean Hydrogen and New Energy Society, Vol. 23, 2012, pp. 437-447. https://doi.org/10.7316/KHNES.2012.23.5.437
  3. Helmut Tributsch, "Photovoltaic hydrogen generation", Int. J. Hydrogen Energy, Vol. 33, 2008, pp. 5911-5930. https://doi.org/10.1016/j.ijhydene.2008.08.017
  4. F. Ng, J. Peron, D. J. Jones, J. Roziere, "Synthesis of novel proton-conducting highly sulfonated polybenzimidazoles for PEMFC and the effect of the type of bisphenyl bridge on polymer and membrane properties", Journal of Polymer Science Part A:Polymer Chemistry, Vol.49, 2011, pp. 2107-2117. https://doi.org/10.1002/pola.24630
  5. F. Lufrano, V. Baglio, O. Di Blasi, P. Staiti, V. Antonucci, A. S. Arico, "Solid polymer electrolyte based on sulfonated polysulfone membranes and acidic silica for direct methanol fuel cells", Solid State Ionics, Vol. 216, 2012, pp. 90-94. https://doi.org/10.1016/j.ssi.2012.03.015
  6. F. Lufrano, G. Squadrito, A. Patti, E. Passalacqua, "Sulfonated polysulfone as promising membranes for polymer electrolyte fuel cells", Journal of Applied Polymer Science, Vol. 77, 2000, pp. 1250-1256. https://doi.org/10.1002/1097-4628(20000808)77:6<1250::AID-APP9>3.0.CO;2-R
  7. R.S.L. Yee, R.A. Rozendalb, K. Zhangc, B.P. Ladewiga, "Cost effective cation exchange mem branes: A review", Chemical Engineering Research and Design. Vol. 90. 2012, pp. 950-959. https://doi.org/10.1016/j.cherd.2011.10.015
  8. M. Lei, T.Z. Yang, W.J. Wang, K. Huang, Y.C. Zhang, R. Zhang, R.Z. Jiao, X.L. Fu, H.J. Yang, Y.G. Wang, W.H. Tang, "One-dimensional manganese oxide nanostructures as radical scavenger to improve membrane electrolyte assembly durability of proton exchange membrane fuel cells", Journal of Power Sources, Vol. 230, 2013, pp. 96-100. https://doi.org/10.1016/j.jpowsour.2012.12.011
  9. D. Zhao, B.L. Yi, H.M. Zhang, H.M. Yu, "$MnO_2/SiO_2-SO_3H$ nanocomposite as hydrogen peroxide scavenger for durability improvement in proton exchange membranes", Journal of Membrane Science, Vol. 346, 2010, pp. 143-151. https://doi.org/10.1016/j.memsci.2009.09.031
  10. Zhao Wang, Haolin Tang, Huijie Zhang, Ming Lei, Rui Chen, Pan Xiao, Mu Pan, "Synthesis of Nafion/$CeO_2$ hybrid for chemically durable proton exchange membrane of fuel cell", Journal of Membrane Science, Vol. 421-422. 2012, pp. 201-210. https://doi.org/10.1016/j.memsci.2012.07.014
  11. S. Tsunekawa, R. Sivamohan, S. Ito, A. Kasuya, T. Fukuda, "Structural study on monosize $CeO_{2-x}$ nano-particles", Nanostruct. Mater., Vol. 11, 1999, pp. 141 https://doi.org/10.1016/S0965-9773(99)00027-6
  12. S. Deshpande, S. Patil, S. Kuchibhatla, S. Seal, "Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide", Appl. Phys. Lett., Vol. 87, 2005, pp. 133.
  13. D. Zhao, B. L. Yi, H. M. Zhang, H. M. Yu, L. Wang, Y. M. Ma and D. M. Xing, "Cesium substituted 12-tungstophosphoric ($Cs_xH_{3-x}PW_{12}O_{40}$) loaded on ceria-degradation mitigation in polymer electrolyte membranes", Journal of Power Sources, Vol. 190, 2009, pp. 301-306. https://doi.org/10.1016/j.jpowsour.2008.12.133
  14. V. Ramani., H. R. Kunz and J. M. Fenton, "Stabilized heteropolyacid/Nafion composite membranes for elevated temperature/low relative humidity PEFC operation", Electrochimica Acta, Vol. 50, No. 5, 2005, pp. 1181-1187. https://doi.org/10.1016/j.electacta.2004.08.015
  15. H. Dogan, T. Y. Inan, E. Unveren and M. Kaya, "Effect of cesium salt of tungstophosphoric acid (Cs-TPA) on the properties of sulfonated polyether ether ketone(SPEEK) composite membranes for fuel cell applications", Int. J. Hydrogen Energy, Vol. 35, 2010, pp. 7784-7795. https://doi.org/10.1016/j.ijhydene.2010.05.045
  16. Yanxin Xiao, Yan Xiang, Ruijie Xiu, Shanfu Lu, "Development of cesium phosphotungstate salt and chitosan composite membrane for direct methanol fuel cells", Carbohydrate Polymers, Vol. 98, 2013, pp. 233-240. https://doi.org/10.1016/j.carbpol.2013.06.017
  17. Mehdi Amirinejad, Sayed Siavash Madaeni, Ezzat Rafiee, Sedigheh Amirinejad, "Cesium hydrogen salt of heteropolyacids/Nafion nanocomposite membranes for proton exchange membrane fuel cells", Journal of Membrane Science, Vol. 377, 2011, pp. 89-98. https://doi.org/10.1016/j.memsci.2011.04.014
  18. M. L. Ponce, "Organic-Inorganic hybrid membranes with heteropolyacids for DMFC applications", Ph. D. Dissertation, University of Hamburg, Hamburg, 2004.
  19. Artur Zurowski, Aneta Kolary-Zurowska, Sonia Dsoke, Piotr J. Barczuk, Roberto Marassi, Pawel J. Kulesza, "Activation of carbon-supported platinum nanoparticles by zeolite-type cesium salts of polyoxometallates of molybdenum and tungsten towards more efficient electrocatalytic oxidation of methanol and ethanol", Journal of Electroanalytical Chemistry, Vol. 649, 2010, pp. 238-247. https://doi.org/10.1016/j.jelechem.2010.04.021
  20. Jianbin Chen, Qiang Guo, Dan Li, Juying Tong, Xia Li, "Properties improvement of SPEEK based proton exchange membranes by doping of ionic liquid sand $Y_2O_3$", Progress in Natural Science: Materials International, Vol. 22, 2012, pp. 26-30. https://doi.org/10.1016/j.pnsc.2011.12.005
  21. Zheng Cui, Yan Xiang, Jiangju Si, Meng Yang, Qi Zhang, Tao Zhang, "Ionic interactions between sulfuric acid and chitosan membranes", Carbohydrate Polymer, Vol. 73, 2008. pp. 111-116. https://doi.org/10.1016/j.carbpol.2007.11.009
  22. S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, "Review of the proton exchange membranes for fuel cell applications", Int. J. Hydrogen Energy, Vol. 35, 2010. pp. 9349-9384. https://doi.org/10.1016/j.ijhydene.2010.05.017
  23. I.V. Kozhevnikov, "Catalysis by heteropoly acids and multicomponent polyoxometalates in liquidphase reactions", Chemical Review, Vol. 98, 1998, pp. 171-198. https://doi.org/10.1021/cr960400y
  24. Matachowski L., Drelinkiewicz A., Lalik E., Mucha D., Gil B., Broz-ek-Mucha Z., "The influence of reagent used for the precipitation of $Cs_2HPW_{12}O_{40}$ salt on its textural and catalytic properties.", Microporous and Mesoporous Materials, Vol. 144, 2011, pp. 46-56. https://doi.org/10.1016/j.micromeso.2011.06.007
  25. A. Corma, "Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions", Chemical Review, Vol. 95, 1995, pp. 559-614. https://doi.org/10.1021/cr00035a006
  26. L. Barbora, S. Acharya, R. Singh, K. Scott, A. Verma, "A novel composite Nafion membrane for direct alcohol fuel cells", Journal of Membrane Science, Vol. 326, 2009, pp. 721-726. https://doi.org/10.1016/j.memsci.2008.11.009
  27. J.G. Hernandez-Cortez, E. Lopez-Salinas, Ma. Manriquez, J.A. Toledo, M.A. Cortes-Jacome, "Acid and base properties of molybdophosphoric acid supported on zirconia: Characterized by IR spectroscopy, TPD and catalytic activity", Fuel, Vol. 100, 2012, pp. 144-151. https://doi.org/10.1016/j.fuel.2012.03.003
  28. G. R. Rao and T. Rajkumar, "Interaction of Keggin anions of 12-tungstophosphoric acid with $Ce_xZr_{1-x}O_2$ solid solutions", J. Colloid Interface Sci., Vol. 324, 2008, pp. 134-141. https://doi.org/10.1016/j.jcis.2008.04.070
  29. A. Coma, "Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions", Chem. Rev., Vol. 95, 1995, pp. 559-614. https://doi.org/10.1021/cr00035a006
  30. Matsuda A., Kikuchi T., Katagiri K., Daiko Y., Muto H., Sakai M., "Mechanochemical synthesis of proton conductive cesium hydrogen salts of 12-tungstophosphoric acid and their composites", Solid State Ionics, Vol. 178, 2007, pp. 723-727. https://doi.org/10.1016/j.ssi.2007.02.033
  31. Noritaka Mizuno and Makoto Misono, "Heterogeneous Catalysis", Chem. Rev., Vol. 98, 1998, pp. 199-217. https://doi.org/10.1021/cr960401q
  32. P. Trogadas, J. Parrondo, and V. Ramani, "Degradation Mitigation in Polymer Electrolyte Membranes Using Free-Radical Scavengers", ECS Transactions, Vol. 16, No. 2, 2008, pp. 1725-1733. https://doi.org/10.1149/1.2982014