• Title/Summary/Keyword: ceramic oxide

Search Result 1,236, Processing Time 0.031 seconds

Microwave Dielectric Properties of (1-X)$Mg_4Ta_2O_{9-x}TiO_2$(X=0, 0.3, 0.4) Ceramics with Sintering Temperature (소결온도에 따른 (1-x)$Mg_4Ta_2O_{9-x}TiO_2$(X=0, 0.3, 0.4) 세라믹스의 마이크로파 유전특성)

  • 김재식;최의선;이문기;이영희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.2
    • /
    • pp.67-72
    • /
    • 2004
  • The microwave dielectric properties and microstructure of the (1-x)$Mg_4Ta_2O_{9-x}TiO_2$(X=0, 0.3, 0.4) ceramic were, investigated. The specimens were prepared by the conventional mixed oxide method with sintering temperature of $1350^{\circ}C$$1425^{\circ}C$. According to the XRD patterns, the (1-x)$Mg_4Ta_2O_{9-x}TiO_2$(X=0, 0.3, 0.4) ceramics have the $Mg_4Ta_2O_{9}$ phase(hexagonal). The dielectric constant($\varepsilon$$_{\gamma}$) and density increased with sintering temperature and mole fraction of x. To improve the quality factor and the temperature coefficient of resonant frequency, TiO$_2$($\varepsilon_{r}$=100, $Q{\times}f_{r}$=40,000GHz, $\tau$$_{f}$=+450 ppm/$^{\circ}C$) was added in $Mg_4Ta_2O_{9}$ ceramics. In the case of the $0.7Mg_4Ta_2O_{9}$-$0.3TiO_2$ and the $0.6Mg_4Ta_2O_{9}$-$0.4TiO_2$ceramics sintered at $1400^{\circ}C$ for 5hr., the microwave dielectric properties were $\varepsilon$$_{\gamma}$=11.72, $Q{\times}f_{r}$=126,419GHz, $\tau_{f}$=-31.82 ppm/$^{\circ}C$ and $\varepsilon_{r}$=12.19, $Q{\times}f_{r}$=109,411GHZ, $\tau$$_{f}$= -17.21 ppm/$^{\circ}C$, respectively.

A Study on the Dielectric Properties of the Pb($Mg_{1/3}Nb_{2/3}$)$O_3$-$PbTiO_3$-Pb($Ni_\frac{1}{2}W_\frac{1}{2}$)$O_3$ Ceramics (Pb($Mg_{1/3}Nb_{2/3}$)$O_3$-$PbTiO_3$-Pb($Ni_\frac{1}{2}W_\frac{1}{2}$)$O_3$세라믹의 유전특성에 관한 연구)

  • 유남산;류기원;이성갑;이영희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1990.10a
    • /
    • pp.65-67
    • /
    • 1990
  • In this study, (0.80-x)Pb($Mg_{1/3}Nb_{2/3}$)$O_3$-$PbTiO_3$-Pb($Ni_\frac{1}{2}W_\frac{1}{2}$)$O_3$ 0.05$\leq$x$\leq$0.20) ceramics were fabricated by the mixed oxide method, the sintering temperature and time were 950∼1200[$^{\circ}C$], 2[hr], respectively. The dielectric and structural properties with composition and sintering temperature were investigated for the application as multilayer ceramic capacitors. Dielectric constant of 0.70PMN-0.2PT-0.10PNW composition with repeated calcination was increased rapidly. Increasing the Pb($Mg_{1/3}Nb_{2/3}$)$O_3$-$PbTiO_3$-Pb($Ni_\frac{1}{2}W_\frac{1}{2}$)$O_3$ contents from 0.05 to 0.20 [mol], phase transition temperature was shifted from 68 to 2[$^{\circ}C$] and dielectric constant was decreased while sintered density was increased. In the specimens containing 0.10, 0.15[mol] of PNW, dielectri constants at room temperature were exhibited the highest values 11199, 10114, respectively. Resistivity of specimens were $10^{10}$$10^{12}$($\Omega$.m) and there was no dependence on sintering temperature and composition.

Development of Electrode Materials for Li-Ion Batteries and Catalysts for Proton Exchange Membrane Fuel Cells (리튬 이차전지용 전극 및 연료전지 촉매 소재 연구 개발 동향)

  • Yun, Hongkwan;Kim, Dahee;Kim, Chunjoong;Kim, Young-Jin;Min, Ji Ho;Jung, Namgee
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.388-405
    • /
    • 2018
  • In this paper, we review about current development of electrode materials for Li-ion batteries and catalysts for fuel cells. We scrutinized various electrode materials for cathode and anode in Li-ion batteries, which include the materials currently being used in the industry and candidates with high energy density. While layered, spinel, olivine, and rock-salt type inorganic electrode materials were introduced as the cathode materials, the Li metal, graphite, Li-alloying metal, and oxide compound have been discussed for the application to the anode materials. In the development of fuel cell catalysts, the catalyst structures classified according to the catalyst composition and surface structure, such as Pt-based metal nanoparticles, non-Pt catalysts, and carbon-based materials, were discussed in detail. Moreover, various support materials used to maximize the active surface area of fuel cell catalysts were explained. New electrode materials and catalysts with both high electrochemical performance and stability can be developed based on the thorough understanding of earlier studied electrode materials and catalysts.

Dielectric and Electrical Characteristics of Lead-Free Complex Electronic Material: Ba0.8Ca0.2(Ti0.8Zr0.1Ce0.1)O3

  • Sahu, Manisha;Hajra, Sugato;Choudhary, Ram Naresh Prasad
    • Korean Journal of Materials Research
    • /
    • v.29 no.8
    • /
    • pp.469-476
    • /
    • 2019
  • A lead-free bulk ceramic having a chemical formula $Ba_{0.8}Ca_{0.2}(Ti_{0.8}Zr_{0.1}Ce_{0.1})O_3$ (further termed as BCTZCO) is synthesized using mixed oxide route. The structural, dielectric, impedance, and conductivity properties, as well as the modulus of the synthesized sample are discussed in the present work. Analysis of X-ray diffraction data obtained at room temperature reveals the existence of some impurity phases. The natural surface morphology shows close packing of grains with few voids. Attempts have been made to study the (a) effect of microstructures containing grains, grain boundaries, and electrodes on impedance and capacitive characteristics, (b) relationship between properties and crystal structure, and (c) nature of the relaxation mechanism of the prepared samples. The relationship between the structure and physical properties is established. The frequency and temperature dependence of the dielectric properties reveal that this complex system has a high dielectric constant and low tangent loss. An analysis of impedance and related parameters illuminates the contributions of grains. The activation energy is determined for only the high temperature region in the temperature dependent AC conductivity graph. Deviation from the Debye behavior is seen in the Nyquist plot at different temperatures. The relaxation mechanism and the electrical transport properties in the sample are investigated with the help of various spectroscopic (i.e., dielectric, modulus, and impedance) techniques. This lead free sample will serve as a base for device engineering.

The Effect of Crystallinity on the Photoluminescence of TiO2 Nanoparticles (결정성에 따른 TiO2 나노입자의 포토루미네선스 영향)

  • Han, Wooje;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.1
    • /
    • pp.23-28
    • /
    • 2019
  • The Titanium oxide ($TiO_2$) is an attractive ceramic material which shows non-toxic, high refractive index, catalytic activity and biocompatibility, and can be fabricated at a low cost due to its high chemical stability and large anisotropy. $TiO_2$ nanoparticles have been prepared by sol-gel method. The pH of solution can affect the $TiO_2$ crystallinity during the formation of nanoparticles. The prepared nanoparticles were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, photoluminescence spectroscopy in order to investigate their structural and photoluminescence properties. Through these analysis, the size of $TiO_2$ nanoparticles were found to be smaller than 5 nm. As the crystallinity of the nanoparticles increased, the emission of PL in the 550 nm region increased. Therefore, luminescence characteristics can be improved by controlling the crystallinity of the $TiO_2$ nanoparticles.

Micro-shear bond strengths of resin-matrix ceramics subjected to different surface conditioning strategies with or without coupling agent application

  • Gunal-Abduljalil, Burcu;Onoral, Ozay;Ongun, Salim
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.3
    • /
    • pp.180-190
    • /
    • 2021
  • Purpose. This study aimed to assess the influence of various micromechanical surface conditioning (MSC) strategies with or without coupling agent (silane) application on the micro-shear bond strength (µSBS) of resin- matrix ceramics (RMCs). Materials and Methods. GC Cerasmart (GC), Lava Ultimate (LU), Vita Enamic (VE), Voco Grandio (VG), and Brilliant Crios (BC) were cut into 1.0-mm-thick slices (n = 32 per RMC) and separated into four groups according to the MSC strategy applied: control-no conditioning (C), air-borne particle abrasion with aluminum oxide particles (APA), 2W- and 3W-Er,Cr:YSGG group coding is missing. The specimens in each group were further separated into silane-applied and silane-free subgroups. Each specimen received two resin cement microtubules (n = 8 per subgroup). A shear force was applied to the adhesive interface through a universal test machine and µSBS values were measured. Data were statistically analyzed by using 3-way ANOVA and Tukey HSD test. Failure patterns were scrutinized under stereomicroscope. Results. RMC material type, MSC strategy, and silanization influenced the µSBS values (P<.05). In comparison to the control group, µSBS values increased after all other MSC strategies (P<.05) while the differences among these strategies were insignificant (P>.05). For control and APA, there were insignificant differences between RMCs (P>.05). The silanization decreased µSBS values of RMCs except for VE. Considerable declines were observed in GC and BC (P<.05). Conclusion. MSC strategies can enhance bond strength values at the RMC - cement interface. However, the choice of MSC strategy is dependent on RMC material type and each RMC can require a dedicated way of conditioning.

Fabrication of Bulk PbTiO3 Ceramics with a High c/a Ratio by Ni Doping (Ni 도핑을 통한 정방성이 높은 벌크 PbTiO3 세라믹 합성)

  • Seon, Jeong-Woo;Cho, Jae-Hyeon;Jo, Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.407-411
    • /
    • 2022
  • Bulk-sized PbTiO3 (PT), which is widely known as a high-performance ferroelectric oxide but cannot be fabricated into a monolithic ceramic due to its high c/a ratio, was successfully prepared with a high tetragonality by partially substituting Ni ions for Pb ions using a solid-state reaction method. We found that Ni-doped PT was well-fabricated as a bulk monolith with a significant c/a ratio of ~1.06. X-ray diffraction on as-sintered and crushed samples revealed that NiTiO3 secondary phase was present at the doping level of more than 2 at.%. Scanning electron microscopic study showed that NiTiO3 secondary phase grew on the surface of PT specimens regardless of the doping level possibly due to the evaporation of Pb during sintering. We demonstrated that an unconventional introduction of Ni ions into A-site plays a key role on the fabrication of bulk PT, though how Ni ion functions should be studied further. We expect that this study contributes to a further development of displacive ferroelectric oxides with a high c/a ratio.

TEM analysis of IBAD/RABiTS substrates prepared by Tripod polishing (Tripod polishing을 이용한 IBAD/RABiTS 기판의 TEM 분석)

  • Choi, Soon-Mee;Chung, Jun-Ki;Yoo, Sang-Im;Park, Chan;Oh, Sang-Soo;Kim, Cheol-Jin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.9-14
    • /
    • 2006
  • Sample preparation plays a critical role in microstructure analysis using TEM. Although TEM specimen has been usually prepared by jet-polishing or Ar-ion beam milling technique. these methods could not be applied to YBCO CC which is composed of IBAD or RABiTS substrates, several buffet layers, and YBCO superconducting layer because of big difference in mechanical strengths between the metallic phase and oxide phases. To obtain useful cross-sectional information such as interface between the phases or second phases in YBCO CC, it is prerequisite to secure the large area of thin section in the cross-sectional direction. The superconducting layer or the buffer layers are relatively weak and fragile compared to the metallic substrate such as Ni-5wt%W RABiTS of Hastelloy-based IBAD, and preferential removal of weak ceramic phases during polishing steps makes specimen preparation almost impossible. Tripod polisher and small jig were home-made and employed to sample preparation. The polishing angle was maintained <$1^{\circ}$ throughout the polishing steps using 2 micrometers attached to the tripod plate. TEM specimens with large and thin area could be secured and used for RABiTS/IBAD substrate analyses. In some cases, additional Ar-beam ion milling with low beam current and impinging angle was used for less than 30 sec. to remove debris or polishing media attacked to the specimens.

The Study on Preparation and Characterization of Yellow Ceramic Pigment (황색세라믹안료의 제조 및 특성연구)

  • Kwon, Myon-Joo;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.504-509
    • /
    • 2018
  • The purpose of this study was to manufacture a high-performance titanium yellow pigment. Anatase type $TiO_2$ was the skeleton of the pigment and $Sb_2O_3$ is used as the color assistant for the coloring agent, $Cr_2O_3$. Mixed raw materials for the pigment were $TiO_2$(98%), $Sb_2O_3$(99.5%), and $Cr_2O_3$(99.5%). The raw materials were mixed by a dry process and crystallized by calcination at $1,000{\sim}1,200^{\circ}C$. The crystalline material was pulverized in a Jar Mill under $1{\mu}m$ by a wet process and dried for 12 hours at $100^{\circ}C$. The pigment was finally made by a fine grinding process. To determine the best temperature for calcination, 4 temperature sections ($1000^{\circ}C$, $1100^{\circ}C$, $1150^{\circ}C$, and $1200^{\circ}C$) were set up. The X-ray diffraction peak of the rutile crystalline structure was highest at $1,150^{\circ}C$. The yellow ceramic pigment, which has the rutile structure, was applied for coating materials. The synthesized pigments underwent a discoloration tests on the acid resistance, alkaline resistance, weather resistance and heat resistance. In addition, a detection test on harmful heavy metals ($Cr^{+6}$) was done. The resulting values (${\Delta}E$) of the weather resistance test (2000hr), acid resistance test, alkaline resistance test, and heat resistance test were 0.74, 0.16, 0.07 and 0.29. The resulting value for heavy metals testing was 34ppm.

A prospective clinical of lithium disilicate pressed zirconia and monolithic zirconia in posterior implant-supported prostheses: A 24-month follow-up (리튬 디실리케이트-지르코니아 이중도재관과 단일구조 지르코니아로 제작된 구치부 고정성 임플란트 지지 보철물의 전향적 임상연구: 24개월 추적관찰)

  • Roh, Kyoung-Woo;Jeon, Young-Chan;Jeong, Chang-Mo;Yun, Mi-Jung;Huh, Jung-Bo;Lee, So-Hyoun;Yang, Dong-Seok;Bae, Eun-Bin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.2
    • /
    • pp.134-141
    • /
    • 2019
  • Purpose: The purpose of this study was to compare the clinical outcomes of lithium disilicate ceramic pressed zirconia prostheses and monolithic zirconia prostheses and to investigate the complications after two years of follow-up in posterior edentulous site. Materials and methods: A total 17 patients (male: 12, female: 5) were treated with 60 posterior fixed implant-supported prostheses (LP. lithium disilicate ceramic pressed zirconia prostheses: n = 30, MZ. monolithic zirconia prostheses: n = 30). After 24-month, clinical examination of Implant survival rate, marginal bone resorption, probing depth, plaque index, bleeding index, calculus and complications were evaluated. Results: There were no failed implants and all implants were normal in function without mobility. Marginal bone resorption was lower in LP group than MZ group at 12-month (P < .05), and 12-month probing depth and calculus deposit in LP group were significantly higher than MZ group (P < .05). Most common complications in MZ were marginal bone resorptions more than 1.5.mm and 2 chipping occurred in LP group. Conclusion: Within the limitations of the present study, lithium disilicate ceramic pressed zirconia is considered as a predictable treatment option as much as monolithic zirconia in posterior fixed implant-supported prostheses.