DOI QR코드

DOI QR Code

Development of Electrode Materials for Li-Ion Batteries and Catalysts for Proton Exchange Membrane Fuel Cells

리튬 이차전지용 전극 및 연료전지 촉매 소재 연구 개발 동향

  • Yun, Hongkwan (Chungnam National University, Dept. of Materials Science and Engineering) ;
  • Kim, Dahee (Chungnam National University, Dept. of Materials Science and Engineering) ;
  • Kim, Chunjoong (Chungnam National University, Dept. of Materials Science and Engineering) ;
  • Kim, Young-Jin (Chungnam National University, Graduate School of Energy Science and Technology) ;
  • Min, Ji Ho (Chungnam National University, Graduate School of Energy Science and Technology) ;
  • Jung, Namgee (Chungnam National University, Graduate School of Energy Science and Technology)
  • 윤홍관 (충남대학교 신소재공학과) ;
  • 김다희 (충남대학교 신소재공학과) ;
  • 김천중 (충남대학교 신소재공학과) ;
  • 김용진 (충남대학교 에너지기술과학대학원) ;
  • 민지호 (충남대학교 에너지기술과학대학원) ;
  • 정남기 (충남대학교 에너지기술과학대학원)
  • Received : 2018.11.30
  • Accepted : 2018.12.17
  • Published : 2018.12.30

Abstract

In this paper, we review about current development of electrode materials for Li-ion batteries and catalysts for fuel cells. We scrutinized various electrode materials for cathode and anode in Li-ion batteries, which include the materials currently being used in the industry and candidates with high energy density. While layered, spinel, olivine, and rock-salt type inorganic electrode materials were introduced as the cathode materials, the Li metal, graphite, Li-alloying metal, and oxide compound have been discussed for the application to the anode materials. In the development of fuel cell catalysts, the catalyst structures classified according to the catalyst composition and surface structure, such as Pt-based metal nanoparticles, non-Pt catalysts, and carbon-based materials, were discussed in detail. Moreover, various support materials used to maximize the active surface area of fuel cell catalysts were explained. New electrode materials and catalysts with both high electrochemical performance and stability can be developed based on the thorough understanding of earlier studied electrode materials and catalysts.

Keywords

References

  1. Naoki Nitta, F. W., Jung Tae Lee and Gleb Yushin. "Li-Ion Battery Materials: Present and Future" Mater. Today, 18 (5), 252 (2015). https://doi.org/10.1016/j.mattod.2014.10.040
  2. Vinodkumar Etacheri, R. M., Ran Elazari, Gregory Salitra and Doron Aurbach. "Challenges in the Development of Advanced Li-Ion Batteries: a Review" Energy Environ. Sci., 4, 3243, (2011). https://doi.org/10.1039/c1ee01598b
  3. Goodenough, J. B.; Park, K. S. "The Li-Ion Rechargeable Battery: a Perspective" J. Am. Chem. Soc., 135 (4), 1167, (2013). https://doi.org/10.1021/ja3091438
  4. Y. M. Jung, W. W. Cho, "Technology Trend and Future Prospect of Li-Ion Battery (in Korean)" J. Am. Ceram. Soc, 13 [5] 7-14 (2010).
  5. J. H. Lee, H. Y. Sun, H. S. Kim, S. W. Um, "Development Trend of Rechargeable Battery for Electric Vehicle (in Korean)" J. Am. Ceram. Soc, 13 [5] 15-28 (2010).
  6. H. D. Yoo, E. M., Gregory Salitra, Daniel Sharon and Doron Aurbach. "On the Challenge of Developing Advanced Technologies for Electrochemical Energy Storage and Conversion" Mater. Today, 17 (3), 110 (2014). https://doi.org/10.1016/j.mattod.2014.02.014
  7. Ozawa, K. "Lithium-Ion Rechargeable Batteries with $LiCoO_2$ and Carbon Electrodes: the $LiCoO_2$/C System" Solid State Ion, 69, 212, (1994) https://doi.org/10.1016/0167-2738(94)90411-1
  8. RuiWang, X. L., Lei Liu, Jinhyuk Lee, Dong-Hwa Seo, Shou-Hang Bo, Alexander Urban, Gerbrand Ceder. A Disordered Rock-Salt Li-Excess Cathode Material with High Capacity and Substantial Oxygen Redox Activity: $Li_{1.25}Nb_{0.25}Mn_{0.5}O_2$. Electrochem. Commun. 60, 70, (2015) https://doi.org/10.1016/j.elecom.2015.08.003
  9. R. Hausbrand, G. C., H. Ehrenberg, M. Groting, K. Albe, C. Hess, W. Jaegermann. "Fundamental Degradation Mechanisms of Layered Oxide Li-Ion Battery Cathode Materials: Methodology, Insights and Novel Approaches" Mater. Sci. Eng. B, 192, 3 (2015). https://doi.org/10.1016/j.mseb.2014.11.014
  10. Yabuuchi, N. Takeuchi, M. Nakayama, M. Shiiba, H. Ogawa, M. Nakayama, K. Ohta, T. Endo, D. Ozaki, T. Inamasu, T.et al. "High-Capacity Electrode Materials for Rechargeable Lithium Batteries: $Li_3NbO_4$-Based System with Cation-Disordered Rocksalt Structure" Proc. Natl. Acad. Sci. U S. A, 25, 112, 7650, (2015).
  11. S. S. Kim, W. W. Choi, S. M. Lee, "Research and Development Trend of Li-Ion Battery Anode Active Materials(in Korean)" J. Am. Ceram. Soc, 13 [5] 39-44 (2010).
  12. Yadong Liu, Q. L., Le Xin, Yuzi Liu, Fan Yang, Eric A. Stach and Jian Xie. "Making Li-Metal Electrodes Rechargeable by Controlling the Dendrite Growth Direction" Nat. Energy, 2, 17083, (2017). https://doi.org/10.1038/nenergy.2017.83
  13. Charles de las Casas, W. L. "A Review of Application of Carbon Nanotubes for Lithium Ion Battery Anode Material" J. Power Sources, 208, 74, (2012). https://doi.org/10.1016/j.jpowsour.2012.02.013
  14. Sole, C. Drewett, N. E. Hardwick, L. J. "In Situ Raman Study of Lithium-Ion Intercalation into Microcrystalline Graphite" Faraday Discuss, 172, 223, (2014). https://doi.org/10.1039/C4FD00079J
  15. Chan, C. K. Peng, H. Liu, G. McIlwrath, K. Zhang, X. F. Huggins, R. A. Cui, Y. "High-Performance Lithium Battery Anodes using Silicon Nanowires" Nat. Nanotechnol, 3 (1), 31, (2008) https://doi.org/10.1038/nnano.2007.411
  16. See-How Ng, J. W., David Wexler, Konstantin Konstantinov, Zai-Ping Guo, and Hua-Kun Liu "Highly Reversible Lithium Storage in Spheroidal Carbon-Coated Silicon Nanocomposites as Anodes for Lithium-Ion Batteries" Angew. Chem, 118, 7050, (2006) https://doi.org/10.1002/ange.200601676
  17. Dash, R. P., S. "Theoretical Limits of Energy Density in Silicon-Carbon Composite Anode Based Lithium Ion Batteries" Sci. Rep, 6, 27449, (2016). https://doi.org/10.1038/srep27449
  18. A. S. Prakash, P. M., K. Ramesha, M. Sathiya, J-M. Tarascon and A. K. Shukla. "Solution-Combustion Synthesized Nanocrystalline $Li_4Ti_5O_{12}$ As High-Rate Performance Li-Ion Battery Anode" Chem. Mater, 22 (2857), (2010).
  19. Zhao, L. Hu, Y. S. Li, H. Wang, Z. Chen, L "Porous $Li_4Ti_5O_{12}$ Coated with N-Doped Carbon from Ionic Liquids for Li-Ion Batteries" Adv. Mater, 23 (11), 1385, (2011). https://doi.org/10.1002/adma.201003294
  20. Jung, H. G. Jang, M. W. Hassoun, J. Sun, Y. K. Scrosati, B. "A high-Rate Long-Life $Li_4Ti_5O_{12}/Li[Ni_{0.45}Co_{0.1}Mn_{1.45}]O_4$ Lithium-Ion Battery" Nat. Commun, 2, 516, (2011). https://doi.org/10.1038/ncomms1527
  21. M. Uchida, Y.-C. Park, K. Kakinuma, H. Yano, D. A. Tryk, T. kamino, H, Uchida, and M. Watanabe, "Effect of the State of Distribution of Supported Pt Nanoparticles on Effective Pt Utilization in Polymer Electrolyte Fuel Cells," Phys. Chem. Chem. Phys., 15 11236-11247 (2013). https://doi.org/10.1039/c3cp51801a
  22. A. Dhanda, H. Pitsch, and R. O'Hayre, "Diffusion Impedance Element Model for the Triple Phase Boundary," J. Electrochem. Soc., 158 [8] B877-884 (2011). https://doi.org/10.1149/1.3596020
  23. C. A. Reiser, L. Bregoli, T. W. Patterson, J. S. Yi, J. D. Yang, M. L. Perry, and T. D. Jarvi, "A Reverse-Current Decay Mechanism for Fuel Cells," Electrochem. Solid-State Lett., 8 [6] A273-A276(2005). https://doi.org/10.1149/1.1896466
  24. J. K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, and H. Jonsson, "Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode," J. Phys. Chem. B, 108 [46] 17886-17892 (2004). https://doi.org/10.1021/jp047349j
  25. V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross, and N. M. Markovic, "Trends in Electrocatalysis on Extended and Nanoscale Pt-Bimetallic Alloy Surfaces," Nat. mater., 6 241-247 (2007). https://doi.org/10.1038/nmat1840
  26. S. Guo, D. Li, H. Zhu, S. Zhang, N. M. Markovic, V. R. Stamenkovic, and S. Sun, "FePt and CoPt Nanowires as Efficient Catalysts for the Oxygen Reduction Reaction," Angew. Chem. Int. Ed., 52 3465-3468 (2013). https://doi.org/10.1002/anie.201209871
  27. C. Cui, L. Gan, H.-H. Li, S.-H. Yu, M. Heggen, and P. Strasser, "Octahedral PtNi Nanoparticle Catalysts: Exceptional Oxygen Reduction Activity by Tuning the Alloy Particle Surface Composition," Nano Lett., 12, 5885-5889 (2012). https://doi.org/10.1021/nl3032795
  28. Y.-H. Cho, T.-Y. Jeon, S. J. Yoo, K.-S. Lee, M. Ahn, O.-H. Kim, Y.-H. Cho, J. W. Lim, N. Jung, W.-S. Yoon, H. Choe, and Y.-E. Sung, "Stability Characteristics of $Pt_1Ni_1$/C as Cathode Catalysts in Membrane Electrode Assembly of Polymer Electrolyte Membrane Fuel Cell," Electrochim. Acta, 59 264-269 (2012). https://doi.org/10.1016/j.electacta.2011.10.060
  29. C. Wang, M. chi, D. Li, D. Strmcnik, D. V. Vliet, G. Wang, V. Komanichy, K.-C. Chang, A. P. Paulikas, D. Tripkovic, J. Pearson, K. L. More, N. M. Markovic, and V. R. Stamenkovic, "Design and Synthesis of Bimetallic Electrocatalyst with Multilayered Pt-Skin Surfaces," J. Am. Chem. Soc., 133, 14396-14403 (2011). https://doi.org/10.1021/ja2047655
  30. N. Jung, Y.-H. Chung, D. Y. Chung, K.-H. Choi, H.-Y. Park, J. Ryu, S.-Y. Lee, M. Kim, Y.-E. Sung, and S. J. Yoo, "Chemical Tuning of Electrochemical Properties of Pt-skin Surfaces for Highly Active Oxygen Reduction Reactions," Phys. Chem. Chem. Phys., 15, 17079-17083 (2013). https://doi.org/10.1039/c3cp52807c
  31. V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas, and N. M. Markovic, "Improved Oxygen Reduction Activity on $Pt_3Ni$(111) via Increased Surface Site Availability," Science, 315 [5811], 493-497 (2007). https://doi.org/10.1126/science.1135941
  32. M. Oezaslanm M. Heggen, and P. Strasser, "Size-Dependent Morphology of Dealloyed Bimetallic Catalysts: Linking the Nano to the Macro Scale," J. Am. Chem. Soc., 134, 514-524 (2011).
  33. F. Cheng, Y. Su, J. Liang, Z. Tao, and J. Chen, "$MnO_2$-Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media," Chem. Mater., 22, 898-905 (2010). https://doi.org/10.1021/cm901698s
  34. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, and H. Dai, "$Co_3O_4$ nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction," Nat. Mater., 10, 780-786, (2011). https://doi.org/10.1038/nmat3087
  35. R. Chenm H. Li, D. Chu, and G. Wang, "Unraveling Oxygen Reduction Reaction Mechanisms on Carbon-Supported Fe-Phthalocyanine and Co-Phthalocyanine Catalysts in Alkaline Solutions," J. Phys. Chem. C, 113, 20689-20697 (2009). https://doi.org/10.1021/jp906408y
  36. G. Wu, K. L. More, C. M. Johnston, and P. Zelenay, "High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt," Science, 332 [6028], 443-447 (2011). https://doi.org/10.1126/science.1200832
  37. J. Y. Cheon, T.Y. Kim, Y. M. Choi, H. Y. Jeong, M. G. Kim, Y. J. Sa, J. S. Kim, Z. h. Lee, T. H. Yang, K. J. Kwon, O. Terasaki, G. G. Park, R. R. Adzic, and S. H. Joo, "Ordered Mesoporous Porphyrinic Carbons with very High Electrocatalytic Activity for the Oxygen Reduction Reaction," Sci. Rep., 3 2715 (2013). https://doi.org/10.1038/srep02715
  38. M. Lefevre, E. Proietti, F. Jaouen, and J. P. Dodelet, "Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells," Science, 324 [5923] 71-74 (2009). https://doi.org/10.1126/science.1170051
  39. M. A. García, and N. V. Rees, "Metal-Free Electrocatalysis : Quaternary-Doped Graphene and the Alkaline Oxygen Reduction Reaction," Appl. Catal. A Gen., 553 107-116 (2018). https://doi.org/10.1016/j.apcata.2017.12.014
  40. J. Y. Cheon, J. H. Kim, J. H. Kim, K. C. Goddeti, J. Y. Park, and S. H. Joo, "Intrinsic Relationship between Enhanced Oxygen Reduction Reaction Activity and Nanoscale Work Function of Doped Carbons," J. Am. Chem. Soc., 136 8875-8878 (2014). https://doi.org/10.1021/ja503557x
  41. H. B. Yang, J. Miao, S. F. Hung, J. Chen, H. B. Tao, X. Wang, L. Zhang, R. Chen, J. Gao, H. M. Chen, L. Dai, and B. Liu, "Identification of Catalytic Sites for Oxygen Reduction and Oxygen Evolution in N-doped Graphene Materials: Development of Highly Efficient Metal-Free Bifunctional Electrocatalyst," Sci. Adv., 2 [4] 1-11 (2016).
  42. X. Zhou, J. Qiao, L. Yang, and J. Zhang, "A Review of Graphene-Based Nanostructural Materials for Both Catalyst Supports and Metal-Free Catalysts in PEM Fuel Cell Oxygen Reduction Reactions," Adv. Energy Mater., 4 1301523-1301547 (2014). https://doi.org/10.1002/aenm.201301523
  43. X. Li, H. Wang, J. T. Robinson, H. Sanchez, G. Diankov, and H. Dai, "Simultaneous Nitrogen Doping and Reduction of Graphene Oxide," J. Am. Chem. Soc., 131 15939-15944 (2009). https://doi.org/10.1021/ja907098f
  44. A. Hirsch, "Functionalization of Single-Walled Carbon Nanotubes," Angew. Chem. Int. Ed., 41 1853-1859 (2002). https://doi.org/10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N
  45. S. C. Roy, A. W. Harding, A. E. Russell, and K. M. Thomas, "Spectroelectrochemical Study of the Role Played by Carbon Functionality in Fuel Cell Electrodes," J. Electrochem. Soc., 144 [7] 2323-2328 (1997). https://doi.org/10.1149/1.1837812
  46. N. Jung, S. M. Kim, D. H. Kang, D. Y. Chung, Y. S. Kang, Y.-H. Chung, Y, W. Choi, C. H. Pang, K.-Y. Suh, and Y.-E. Sung, "High Performance Hybrid Catalyst with Selectively Functionalized Carbon by Temperature-Directed Switchable Polymer," Chem. Mater., 25 1526-1532 (2013). https://doi.org/10.1021/cm303691e
  47. H.-S. Oh, and H. Kim, "Efficient Synthesis of Pt Nanoparticles Supported on Hydrophobic Graphitized Carbon Nanofibers for Electrocatalysts Using Noncovalent Functionalization," Adv. Funct. Mater., 21 3954-3960 (2011). https://doi.org/10.1002/adfm.201101177
  48. B. W. Yang, X. Wang, F. Yang, C. Yang, and X. Yang, "Carbon Nanotubes Decorated with Pt Nanocubes by a Noncovalent Functionalization Method and Their Role in Oxygen Reduction," Adv. Mater., 20 2579-2587 (2008). https://doi.org/10.1002/adma.200702949
  49. S.-Y. Huang, P. Ganesan, S. K. Park, and B. N. Popov, "Development of a Titanium Dioxide- Supported Platinum Catalyst with Ultrahigh Stability for Polymer Electrolyte Membrane Fuel Cell Applications," J. Am. Chem. Soc., 131 13898-13899 (2009). https://doi.org/10.1021/ja904810h
  50. V. T. Ho, C.-J. Pan, J. Rick, W.-N. Su, and B.-J. Hwang, "Nanostructured $Ti_{0.7}Mo_{0.3}O_2$ Support Enhances Electron Transfer to Pt: High-Performance Catalyst for Oxygen Reduction Reaction," J. Am. Chem. Soc., 133, 11716-11724 (2011). https://doi.org/10.1021/ja2039562
  51. L. Chevallier, A. Bauer, S. Cavaliere, R. Hui, J. Roziere, and D. J. Jones, "Mesoporous Nanostructured Nb-Doped Titanium Dioxide Microsphere Catalyst Supports for PEM Fuel Cell Electrodes," ACS Appl. Mater. Interfaces, 4 1752-1759 (2012). https://doi.org/10.1021/am300002j
  52. P. K. Mohanta, C. Gokler, A. O. Arenas, and L. Jorissen, "Sb doped $SnO_2$ as a Stable Cathode Catalyst support for Low Temperature Polymer Electrolyte Membrane Fuel Cell," Int. J. Hydrogen Energy, 42 27950-27961 (2017). https://doi.org/10.1016/j.ijhydene.2017.06.064