Browse > Article
http://dx.doi.org/10.4313/JKEM.2022.35.4.14

Fabrication of Bulk PbTiO3 Ceramics with a High c/a Ratio by Ni Doping  

Seon, Jeong-Woo (Jülich-UNIST Leading Institute for Advance Energy Materials & Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology)
Cho, Jae-Hyeon (Jülich-UNIST Leading Institute for Advance Energy Materials & Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology)
Jo, Wook (Jülich-UNIST Leading Institute for Advance Energy Materials & Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.35, no.4, 2022 , pp. 407-411 More about this Journal
Abstract
Bulk-sized PbTiO3 (PT), which is widely known as a high-performance ferroelectric oxide but cannot be fabricated into a monolithic ceramic due to its high c/a ratio, was successfully prepared with a high tetragonality by partially substituting Ni ions for Pb ions using a solid-state reaction method. We found that Ni-doped PT was well-fabricated as a bulk monolith with a significant c/a ratio of ~1.06. X-ray diffraction on as-sintered and crushed samples revealed that NiTiO3 secondary phase was present at the doping level of more than 2 at.%. Scanning electron microscopic study showed that NiTiO3 secondary phase grew on the surface of PT specimens regardless of the doping level possibly due to the evaporation of Pb during sintering. We demonstrated that an unconventional introduction of Ni ions into A-site plays a key role on the fabrication of bulk PT, though how Ni ion functions should be studied further. We expect that this study contributes to a further development of displacive ferroelectric oxides with a high c/a ratio.
Keywords
Lead titanate; Ferroelectricity/ferroelectric oxides; Piezoelectricity/piezoelectric oxides; Goldschmidt tolerance factor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. M. Zhang, M. An, X. Y. Yao, and S. Dong, Front. Phys., 10, 107701 (2015). [DOI: https://doi.org/10.1007/s11467-015-0512-y]   DOI
2 I. Grinberg, D. V. West, M. Torres, G. Gou, D. M. Stein, L. Wu, G. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier, and A. M. Rappe, Nature, 503, 509 (2013). [DOI: https://doi.org/10.1038/nature12622]   DOI
3 J. F. Scott and C. A. Paz de Araujo, Science, 246, 1400 (1989). [DOI: https://doi.org/10.1126/science.246.4936.1400]   DOI
4 T. Leist, J. Chen, W. Jo, E. Aulbach, J. Suffner, and J. Rodel, J. Am. Ceram. Soc., 95, 711 (2012). [DOI: https://doi.org/10.1111/j.1551-2916.2011.04848.x]   DOI
5 M. J. Haun, E. Furman, S. J. Jang, H. A. Mckinstry, and L. E. Cross, J. Appl. Phys., 62, 3331 (1987). [DOI: https://doi.org/10.1063/1.339293]   DOI
6 S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C. H. Yang, M. D. Rossell, P. Yu, Y. H. Chu, J. F. Scott, J. W. Ager III, L. W. Martin, and R. Ramesh, Nat. Nanotechnol., 5, 143 (2010). [DOI: https://doi.org/10.1038/nnano.2009.451]   DOI
7 G. Shirane and S. Hoshino, J. Phys. Soc. Jpn., 6, 265 (1951). [DOI: https://doi.org/10.1143/JPSJ.6.265]   DOI
8 Y. Xu, Ferroelectric Materials and Their Applications ((Elsevier, Amsterdam, 2013) p. 101.
9 G. Shirane, R. Pepinsky, and B. C. Frazer, Acta Cryst., 9, 131 (1956). [DOI: https://doi.org/10.1107/S0365110X56000309]   DOI
10 R. S. Roth, J. Res. Natl. Bur. Stand., 58, 75 (1957). [DOI: https://doi.org/10.6028/jres.058.010]   DOI
11 Y. Kuroiwa, S. Aoyagi, A. Sawada, J. Harada, E. Nishibori, M. Takata, and M. Sakata, Phys. Rev. Lett., 87, 217601 (2001). [DOI: https://doi.org/10.1103/PhysRevLett.87.217601]   DOI
12 A. R. Damodaran, S. Pandya, J. C. Agar, Y. Cao, R. K. Vasudevan, R. Xu, S. Saremi, Q. Li, J. Kim, M. R. McCarter, L. R. Dedon, T. Angsten, N. Balke, S. Jesse, M. Asta, S. V. Kalinin, and L. W. Martin, Adv. Mater., 29, 1702069 (2017). [DOI: https://doi.org/10.1002/adma.201702069]   DOI
13 A. Safari, R. K. Panda, and V. F. Janas, Key Eng. Mater., 122, 35 (1996). [DOI: https://doi.org/10.4028/www.scientific.net/KEM.122-124.35]   DOI
14 J. B. Bellam, M. A. Ruiz-Preciado, M. Edely, J. Szade, A. Jouanneaux, and A. H. Kassiba, RSC Adv., 5, 10551 (2015). [DOI: https://doi.org/10.1039/c4ra12516a]   DOI
15 H. Takeuchi, S. Jyomura, E. Yamamoto, and Y. Ito, J. Acoust. Soc. Am., 72, 1114 (1982). [DOI: https://doi.org/10.1121/1.388319]   DOI
16 B. Noheda, D. E. Cox, G. Shirane, S. E. Park, L. E. Cross, and Z. Zhong, Phys. Rev. Lett., 86, 3891 (2001). [DOI: https://doi.org/10.1103/PhysRevLett.86.3891]   DOI
17 R. Lakshminarayanan, D. K. Shetty, and R. A. Cutler, J. Am. Ceram. Soc., 79, 79 (1996). [DOI: https://doi.org/10.1111/j.1151-2916.1996.tb07883.x]   DOI
18 A. T. Qiu, L. J. Liu, W. Pang, X. G. Lu, and C. H. Li, Trans. Nonferrous Met. Soc. China, 21, 1808 (2011). [DOI: https://doi.org/10.1016/S1003-6326(11)60935-7]   DOI
19 H. Nakamoto, D. Yamazaki, T. Yamamoto, H. Kurata, S. Yamada, K. Mukaida, T. Ninomiya, T. Ohkawa, S. Masui, and K. Gotoh, IEEE J. Solid-State Circuits, 42, 101 (2006). [DOI: https://doi.org/10.1109/JSSC.2006.886523]   DOI
20 D. Damjanovic, Rep. Prog. Phys., 61, 1267 (1998). [DOI: https://doi.org/10.1088/0034-4885/61/9/002]   DOI
21 S. V. Kalinin, A. N. Morozovska, L. Q. Chen, and B. J. Rodriguez, Rep. Prog. Phys., 73, 056502 (2010). [DOI: https://doi.org/10.1088/0034-4885/73/5/056502]   DOI
22 R. E. Cohen, Nature, 358, 136 (1992). [DOI: https://doi.org/10.1038/358136a0]   DOI
23 V. M. Goldschmidt, Naturwissenschaften, 14, 477 (1926). [DOI: https://doi.org/10.1007/BF01507527]   DOI
24 R. E. Cohen and H. Krakauer, Ferroelectrics, 136, 65 (1992). [DOI: https://doi.org/10.1080/00150199208016067]   DOI
25 J. H. Cho, S. Cho, J. H. Lee, H. Palneedi, J. H. Lee, H. P. Kim, N. J. Lee, S. Tigunta, S. Pojprapai, S. Kim, J. Ryu, Y. S. Oh, S. Hong, and W. Jo, J. Am. Ceram. Soc., 104, 6384 (2021). [DOI: https://doi.org/10.1111/jace.18012]   DOI
26 H. Jaffe, J. Am. Ceram. Soc., 41, 494 (1958). [DOI: https://doi.org/10.1111/j.1151-2916.1958.tb12903.x]   DOI
27 A. Pelaiz-Barranco, Y. Mendez-Gonzalez, D. C. Arnold, P. Saint-Gregoire, and D. J. Keeble, J. Mater. Sci., 47, 1094 (2012). [DOI: https://doi.org/10.1007/s10853-011-5900-2]   DOI
28 A. V. Virkar, J. L. Huang, and R. A. Cutler, J. Am. Ceram. Soc., 70, 164 (1987). [DOI: https://doi.org/10.1111/j.1151-2916.1987.tb04952.x]   DOI
29 M. Sepliarsky, Z. Wu, A. Asthagiri, and R. E. Cohen, Ferroelectrics, 301, 55 (2004). [DOI: https://doi.org/10.1080/00150190490454882]   DOI
30 J. H. Cho, J. H. Lee, H. Jang, N. J. Lee, W. S. Kang, G. T. Hwang, S. Kim, M. G. Kim, and W. Jo, J. Appl. Phys., 130, 094101 (2021). [DOI: https://doi.org/10.1063/5.0058823]   DOI
31 E. C. Paris, M.F.C. Gurgel, T. M. Boschi, M. R. Joya, P. S. Pizani, A. G. Souza, E. R. Leite, J. A. Varela, and E. Longo, J. Alloys Compd., 462, 157 (2008). [DOI: https://doi.org/10.1016/j.jallcom.2007.07.107]   DOI
32 D. D. Fong, A. M. Kolpak, J. A. Eastman, S. K. Streiffer, P. H. Fuoss, G. B. Stephenson, C. Thompson, D. M. Kim, K. J. Choi, C. B. Eom, I. Grinberg, and A. M. Rappe, Phys. Rev. Lett., 96, 127601 (2006). [DOI: https://doi.org/10.1103/PhysRevLett.96.127601]   DOI
33 D. Y. Cho, J. Y. Kim, B. G. Park, K. J. Rho, J. H. Park, H. J. Noh, B. Kim, S. J. Oh, H. M. Park, J. S. Ahn, H. Ishibashi, S. W. Cheong, J. H. Lee, P. Murugavel, T. W. Noh, A. Tanaka, and T. Jo, Phys. Rev. Lett., 98, 217601 (2007). [DOI: https://doi.org/10.1103/PhysRevLett.98.217601]   DOI
34 J. Xu, W. Ding, W. Zhao, W. Zhao, Z. Hong, and F. Huang, ACS Energy Lett., 2, 659 (2017). [DOI: https://doi.org/10.1021/acsenergylett.7b00018]   DOI
35 M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, New York, 2001) p. 8.
36 G. Shirane, S. Hoshino, and K. Suzuki, J. Phys. Soc. Jpn., 5, 453 (1950). [DOI: https://doi.org/10.1143/Jpsj.5.453]   DOI