Browse > Article
http://dx.doi.org/10.31613/ceramist.2018.21.4.07

Development of Electrode Materials for Li-Ion Batteries and Catalysts for Proton Exchange Membrane Fuel Cells  

Yun, Hongkwan (Chungnam National University, Dept. of Materials Science and Engineering)
Kim, Dahee (Chungnam National University, Dept. of Materials Science and Engineering)
Kim, Chunjoong (Chungnam National University, Dept. of Materials Science and Engineering)
Kim, Young-Jin (Chungnam National University, Graduate School of Energy Science and Technology)
Min, Ji Ho (Chungnam National University, Graduate School of Energy Science and Technology)
Jung, Namgee (Chungnam National University, Graduate School of Energy Science and Technology)
Publication Information
Ceramist / v.21, no.4, 2018 , pp. 388-405 More about this Journal
Abstract
In this paper, we review about current development of electrode materials for Li-ion batteries and catalysts for fuel cells. We scrutinized various electrode materials for cathode and anode in Li-ion batteries, which include the materials currently being used in the industry and candidates with high energy density. While layered, spinel, olivine, and rock-salt type inorganic electrode materials were introduced as the cathode materials, the Li metal, graphite, Li-alloying metal, and oxide compound have been discussed for the application to the anode materials. In the development of fuel cell catalysts, the catalyst structures classified according to the catalyst composition and surface structure, such as Pt-based metal nanoparticles, non-Pt catalysts, and carbon-based materials, were discussed in detail. Moreover, various support materials used to maximize the active surface area of fuel cell catalysts were explained. New electrode materials and catalysts with both high electrochemical performance and stability can be developed based on the thorough understanding of earlier studied electrode materials and catalysts.
Keywords
Li-ion battery; Cathode; Anode; Fuel Cell; Catalyst;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Cui, L. Gan, H.-H. Li, S.-H. Yu, M. Heggen, and P. Strasser, "Octahedral PtNi Nanoparticle Catalysts: Exceptional Oxygen Reduction Activity by Tuning the Alloy Particle Surface Composition," Nano Lett., 12, 5885-5889 (2012).   DOI
2 Y.-H. Cho, T.-Y. Jeon, S. J. Yoo, K.-S. Lee, M. Ahn, O.-H. Kim, Y.-H. Cho, J. W. Lim, N. Jung, W.-S. Yoon, H. Choe, and Y.-E. Sung, "Stability Characteristics of $Pt_1Ni_1$/C as Cathode Catalysts in Membrane Electrode Assembly of Polymer Electrolyte Membrane Fuel Cell," Electrochim. Acta, 59 264-269 (2012).   DOI
3 C. Wang, M. chi, D. Li, D. Strmcnik, D. V. Vliet, G. Wang, V. Komanichy, K.-C. Chang, A. P. Paulikas, D. Tripkovic, J. Pearson, K. L. More, N. M. Markovic, and V. R. Stamenkovic, "Design and Synthesis of Bimetallic Electrocatalyst with Multilayered Pt-Skin Surfaces," J. Am. Chem. Soc., 133, 14396-14403 (2011).   DOI
4 N. Jung, Y.-H. Chung, D. Y. Chung, K.-H. Choi, H.-Y. Park, J. Ryu, S.-Y. Lee, M. Kim, Y.-E. Sung, and S. J. Yoo, "Chemical Tuning of Electrochemical Properties of Pt-skin Surfaces for Highly Active Oxygen Reduction Reactions," Phys. Chem. Chem. Phys., 15, 17079-17083 (2013).   DOI
5 V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas, and N. M. Markovic, "Improved Oxygen Reduction Activity on $Pt_3Ni$(111) via Increased Surface Site Availability," Science, 315 [5811], 493-497 (2007).   DOI
6 M. Oezaslanm M. Heggen, and P. Strasser, "Size-Dependent Morphology of Dealloyed Bimetallic Catalysts: Linking the Nano to the Macro Scale," J. Am. Chem. Soc., 134, 514-524 (2011).
7 F. Cheng, Y. Su, J. Liang, Z. Tao, and J. Chen, "$MnO_2$-Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media," Chem. Mater., 22, 898-905 (2010).   DOI
8 G. Wu, K. L. More, C. M. Johnston, and P. Zelenay, "High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt," Science, 332 [6028], 443-447 (2011).   DOI
9 Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, and H. Dai, "$Co_3O_4$ nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction," Nat. Mater., 10, 780-786, (2011).   DOI
10 R. Chenm H. Li, D. Chu, and G. Wang, "Unraveling Oxygen Reduction Reaction Mechanisms on Carbon-Supported Fe-Phthalocyanine and Co-Phthalocyanine Catalysts in Alkaline Solutions," J. Phys. Chem. C, 113, 20689-20697 (2009).   DOI
11 J. Y. Cheon, T.Y. Kim, Y. M. Choi, H. Y. Jeong, M. G. Kim, Y. J. Sa, J. S. Kim, Z. h. Lee, T. H. Yang, K. J. Kwon, O. Terasaki, G. G. Park, R. R. Adzic, and S. H. Joo, "Ordered Mesoporous Porphyrinic Carbons with very High Electrocatalytic Activity for the Oxygen Reduction Reaction," Sci. Rep., 3 2715 (2013).   DOI
12 M. Lefevre, E. Proietti, F. Jaouen, and J. P. Dodelet, "Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells," Science, 324 [5923] 71-74 (2009).   DOI
13 M. A. García, and N. V. Rees, "Metal-Free Electrocatalysis : Quaternary-Doped Graphene and the Alkaline Oxygen Reduction Reaction," Appl. Catal. A Gen., 553 107-116 (2018).   DOI
14 J. Y. Cheon, J. H. Kim, J. H. Kim, K. C. Goddeti, J. Y. Park, and S. H. Joo, "Intrinsic Relationship between Enhanced Oxygen Reduction Reaction Activity and Nanoscale Work Function of Doped Carbons," J. Am. Chem. Soc., 136 8875-8878 (2014).   DOI
15 H. B. Yang, J. Miao, S. F. Hung, J. Chen, H. B. Tao, X. Wang, L. Zhang, R. Chen, J. Gao, H. M. Chen, L. Dai, and B. Liu, "Identification of Catalytic Sites for Oxygen Reduction and Oxygen Evolution in N-doped Graphene Materials: Development of Highly Efficient Metal-Free Bifunctional Electrocatalyst," Sci. Adv., 2 [4] 1-11 (2016).
16 J. H. Lee, H. Y. Sun, H. S. Kim, S. W. Um, "Development Trend of Rechargeable Battery for Electric Vehicle (in Korean)" J. Am. Ceram. Soc, 13 [5] 15-28 (2010).
17 Naoki Nitta, F. W., Jung Tae Lee and Gleb Yushin. "Li-Ion Battery Materials: Present and Future" Mater. Today, 18 (5), 252 (2015).   DOI
18 Vinodkumar Etacheri, R. M., Ran Elazari, Gregory Salitra and Doron Aurbach. "Challenges in the Development of Advanced Li-Ion Batteries: a Review" Energy Environ. Sci., 4, 3243, (2011).   DOI
19 Goodenough, J. B.; Park, K. S. "The Li-Ion Rechargeable Battery: a Perspective" J. Am. Chem. Soc., 135 (4), 1167, (2013).   DOI
20 Y. M. Jung, W. W. Cho, "Technology Trend and Future Prospect of Li-Ion Battery (in Korean)" J. Am. Ceram. Soc, 13 [5] 7-14 (2010).
21 H. D. Yoo, E. M., Gregory Salitra, Daniel Sharon and Doron Aurbach. "On the Challenge of Developing Advanced Technologies for Electrochemical Energy Storage and Conversion" Mater. Today, 17 (3), 110 (2014).   DOI
22 Ozawa, K. "Lithium-Ion Rechargeable Batteries with $LiCoO_2$ and Carbon Electrodes: the $LiCoO_2$/C System" Solid State Ion, 69, 212, (1994)   DOI
23 RuiWang, X. L., Lei Liu, Jinhyuk Lee, Dong-Hwa Seo, Shou-Hang Bo, Alexander Urban, Gerbrand Ceder. A Disordered Rock-Salt Li-Excess Cathode Material with High Capacity and Substantial Oxygen Redox Activity: $Li_{1.25}Nb_{0.25}Mn_{0.5}O_2$. Electrochem. Commun. 60, 70, (2015)   DOI
24 R. Hausbrand, G. C., H. Ehrenberg, M. Groting, K. Albe, C. Hess, W. Jaegermann. "Fundamental Degradation Mechanisms of Layered Oxide Li-Ion Battery Cathode Materials: Methodology, Insights and Novel Approaches" Mater. Sci. Eng. B, 192, 3 (2015).   DOI
25 S. C. Roy, A. W. Harding, A. E. Russell, and K. M. Thomas, "Spectroelectrochemical Study of the Role Played by Carbon Functionality in Fuel Cell Electrodes," J. Electrochem. Soc., 144 [7] 2323-2328 (1997).   DOI
26 X. Zhou, J. Qiao, L. Yang, and J. Zhang, "A Review of Graphene-Based Nanostructural Materials for Both Catalyst Supports and Metal-Free Catalysts in PEM Fuel Cell Oxygen Reduction Reactions," Adv. Energy Mater., 4 1301523-1301547 (2014).   DOI
27 X. Li, H. Wang, J. T. Robinson, H. Sanchez, G. Diankov, and H. Dai, "Simultaneous Nitrogen Doping and Reduction of Graphene Oxide," J. Am. Chem. Soc., 131 15939-15944 (2009).   DOI
28 A. Hirsch, "Functionalization of Single-Walled Carbon Nanotubes," Angew. Chem. Int. Ed., 41 1853-1859 (2002).   DOI
29 N. Jung, S. M. Kim, D. H. Kang, D. Y. Chung, Y. S. Kang, Y.-H. Chung, Y, W. Choi, C. H. Pang, K.-Y. Suh, and Y.-E. Sung, "High Performance Hybrid Catalyst with Selectively Functionalized Carbon by Temperature-Directed Switchable Polymer," Chem. Mater., 25 1526-1532 (2013).   DOI
30 H.-S. Oh, and H. Kim, "Efficient Synthesis of Pt Nanoparticles Supported on Hydrophobic Graphitized Carbon Nanofibers for Electrocatalysts Using Noncovalent Functionalization," Adv. Funct. Mater., 21 3954-3960 (2011).   DOI
31 B. W. Yang, X. Wang, F. Yang, C. Yang, and X. Yang, "Carbon Nanotubes Decorated with Pt Nanocubes by a Noncovalent Functionalization Method and Their Role in Oxygen Reduction," Adv. Mater., 20 2579-2587 (2008).   DOI
32 S.-Y. Huang, P. Ganesan, S. K. Park, and B. N. Popov, "Development of a Titanium Dioxide- Supported Platinum Catalyst with Ultrahigh Stability for Polymer Electrolyte Membrane Fuel Cell Applications," J. Am. Chem. Soc., 131 13898-13899 (2009).   DOI
33 Charles de las Casas, W. L. "A Review of Application of Carbon Nanotubes for Lithium Ion Battery Anode Material" J. Power Sources, 208, 74, (2012).   DOI
34 Yabuuchi, N. Takeuchi, M. Nakayama, M. Shiiba, H. Ogawa, M. Nakayama, K. Ohta, T. Endo, D. Ozaki, T. Inamasu, T.et al. "High-Capacity Electrode Materials for Rechargeable Lithium Batteries: $Li_3NbO_4$-Based System with Cation-Disordered Rocksalt Structure" Proc. Natl. Acad. Sci. U S. A, 25, 112, 7650, (2015).
35 S. S. Kim, W. W. Choi, S. M. Lee, "Research and Development Trend of Li-Ion Battery Anode Active Materials(in Korean)" J. Am. Ceram. Soc, 13 [5] 39-44 (2010).
36 Yadong Liu, Q. L., Le Xin, Yuzi Liu, Fan Yang, Eric A. Stach and Jian Xie. "Making Li-Metal Electrodes Rechargeable by Controlling the Dendrite Growth Direction" Nat. Energy, 2, 17083, (2017).   DOI
37 Sole, C. Drewett, N. E. Hardwick, L. J. "In Situ Raman Study of Lithium-Ion Intercalation into Microcrystalline Graphite" Faraday Discuss, 172, 223, (2014).   DOI
38 Chan, C. K. Peng, H. Liu, G. McIlwrath, K. Zhang, X. F. Huggins, R. A. Cui, Y. "High-Performance Lithium Battery Anodes using Silicon Nanowires" Nat. Nanotechnol, 3 (1), 31, (2008)   DOI
39 See-How Ng, J. W., David Wexler, Konstantin Konstantinov, Zai-Ping Guo, and Hua-Kun Liu "Highly Reversible Lithium Storage in Spheroidal Carbon-Coated Silicon Nanocomposites as Anodes for Lithium-Ion Batteries" Angew. Chem, 118, 7050, (2006)   DOI
40 Dash, R. P., S. "Theoretical Limits of Energy Density in Silicon-Carbon Composite Anode Based Lithium Ion Batteries" Sci. Rep, 6, 27449, (2016).   DOI
41 A. Dhanda, H. Pitsch, and R. O'Hayre, "Diffusion Impedance Element Model for the Triple Phase Boundary," J. Electrochem. Soc., 158 [8] B877-884 (2011).   DOI
42 A. S. Prakash, P. M., K. Ramesha, M. Sathiya, J-M. Tarascon and A. K. Shukla. "Solution-Combustion Synthesized Nanocrystalline $Li_4Ti_5O_{12}$ As High-Rate Performance Li-Ion Battery Anode" Chem. Mater, 22 (2857), (2010).
43 V. T. Ho, C.-J. Pan, J. Rick, W.-N. Su, and B.-J. Hwang, "Nanostructured $Ti_{0.7}Mo_{0.3}O_2$ Support Enhances Electron Transfer to Pt: High-Performance Catalyst for Oxygen Reduction Reaction," J. Am. Chem. Soc., 133, 11716-11724 (2011).   DOI
44 L. Chevallier, A. Bauer, S. Cavaliere, R. Hui, J. Roziere, and D. J. Jones, "Mesoporous Nanostructured Nb-Doped Titanium Dioxide Microsphere Catalyst Supports for PEM Fuel Cell Electrodes," ACS Appl. Mater. Interfaces, 4 1752-1759 (2012).   DOI
45 P. K. Mohanta, C. Gokler, A. O. Arenas, and L. Jorissen, "Sb doped $SnO_2$ as a Stable Cathode Catalyst support for Low Temperature Polymer Electrolyte Membrane Fuel Cell," Int. J. Hydrogen Energy, 42 27950-27961 (2017).   DOI
46 Zhao, L. Hu, Y. S. Li, H. Wang, Z. Chen, L "Porous $Li_4Ti_5O_{12}$ Coated with N-Doped Carbon from Ionic Liquids for Li-Ion Batteries" Adv. Mater, 23 (11), 1385, (2011).   DOI
47 Jung, H. G. Jang, M. W. Hassoun, J. Sun, Y. K. Scrosati, B. "A high-Rate Long-Life $Li_4Ti_5O_{12}/Li[Ni_{0.45}Co_{0.1}Mn_{1.45}]O_4$ Lithium-Ion Battery" Nat. Commun, 2, 516, (2011).   DOI
48 M. Uchida, Y.-C. Park, K. Kakinuma, H. Yano, D. A. Tryk, T. kamino, H, Uchida, and M. Watanabe, "Effect of the State of Distribution of Supported Pt Nanoparticles on Effective Pt Utilization in Polymer Electrolyte Fuel Cells," Phys. Chem. Chem. Phys., 15 11236-11247 (2013).   DOI
49 C. A. Reiser, L. Bregoli, T. W. Patterson, J. S. Yi, J. D. Yang, M. L. Perry, and T. D. Jarvi, "A Reverse-Current Decay Mechanism for Fuel Cells," Electrochem. Solid-State Lett., 8 [6] A273-A276(2005).   DOI
50 J. K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, and H. Jonsson, "Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode," J. Phys. Chem. B, 108 [46] 17886-17892 (2004).   DOI
51 V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross, and N. M. Markovic, "Trends in Electrocatalysis on Extended and Nanoscale Pt-Bimetallic Alloy Surfaces," Nat. mater., 6 241-247 (2007).   DOI
52 S. Guo, D. Li, H. Zhu, S. Zhang, N. M. Markovic, V. R. Stamenkovic, and S. Sun, "FePt and CoPt Nanowires as Efficient Catalysts for the Oxygen Reduction Reaction," Angew. Chem. Int. Ed., 52 3465-3468 (2013).   DOI