• Title/Summary/Keyword: ceramic core

Search Result 342, Processing Time 0.031 seconds

Study about shear bond strength of zirconia core used in dental prosthesis (치과 보철물에 사용되는 지르코니아 코어의 전단결합강도에 관한 연구)

  • Sim, Ji-Young;Kim, Jae-Hong;Kim, Woong-Chul;Kim, Hae-Young;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.33 no.4
    • /
    • pp.299-306
    • /
    • 2011
  • Purpose: This study aimed to investigate the shear bond strength by manufacturing the veneering porcelain on the IPS e.max $ZirCAD^{(R)}$ zirconia core, using the layering technique and heat-pressing technique, and to evaluate the clinical stability by comparing to the conventional metal ceramic system. Methods: The Schmitz-Schulmeyer test method was used to evaluate the core-veneer shear bond strength of zirconia core ceramic(IPS e.max $ZirCAD^{(R)}$) and their manufacture recommended two veneering ceramic systems(IPS e.max $ceram^{(R)}$, IPS e. max $ZirPress^{(R)}$). A metal ceramic system(Bellabond $plus^{(R)}$, VITA $VM13^{(R)}$) was used as a control group for the two all ceramic system test groups. The maximum loading and shear bond strength was measured. The average shear strength(MPa) was analyzed with the one-way ANOVA and the Tukey's test(${\alpha}$=.05). The fracture specimens were examined using Microscope to determine the failure pattern. Results: The mean shear bond strengths(SD) in MPa were MBSB control 43.62(2.13); ZBSB 18.65(1.76); ZPSB 18.89(1.54). The shear strengths of the zirconia cores were not significantly different(P>.05). Microscope examination showed that zirconia specimens presented mixed failure, and base metal alloy specimens showed adhesive failure. Conclusion: There was no siginificant different between the layering technique and the heat pressing technique in the veneering methods on the zirconia cores. None of the zirconia core and veneering ceramics could attain the high bond strength values of the metal ceramic combination.

INFLUENCE OF INVESTMENT/CERAMIC INTERACTION LAYER ON INTERFACIAL TOUGHNESS OF BODY CERAMIC BONDED TO LITHIA-BASED CERAMIC

  • Park, Ju-Mi
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.6
    • /
    • pp.683-689
    • /
    • 2006
  • Statement of problem. Interfacial toughness is important in the mechanical property of layered dental ceramics such as core-veneered all-ceramic dental materials. The interfaces between adjacent layers must be strongly bonded to prevent delamination, however the weak interface makes delamination by the growth of lateral cracks along the interface. Purpose. The purpose of this study was to determine the effect of the reaction layer on the interfacial fracture toughness of the core/veneer structure according to the five different divesting. Materials and methods. Thirty five heat-pressed Lithia-based ceramic core bars (IPS Empress 2), $20mm{\times}3mm{\times}2mm$ were made following the five different surface divesting conditions. G1 was no dissolution or sandblasting of the interaction layer. G2 and G3 were dissolved layer with 0.2% HF in an ultrasonic unit for 15min and 30 min. G4 and G5 were dissolved layer for 15min and 30min and then same sandblasting for 60s each. We veneered bilayered ceramic bars, $20mm{\times}2.8mm{\times}3.8mm$(2mm core and 1.8mm veneer), according to the manufacturer's instruction. After polishing the specimens through $1{\mu}m$ alumina, we induced five cracks for each of five groups within the veneer close to interface under an applied indenter load of 19.6N with a Vickers microhardness indenter. Results. The results from Vickers hardness were the percentage of delamination G1:55%, G2:50%, G3:35%, G4:0% and G5:0%. SEM examination showed that the mean thickness of the reaction layer were G1 $93.5{\pm}20.6{\mu}m$, G2 $69.9{\pm}14.3{\mu}m$, G3 $59.2{\pm}20.2{\mu}m$, G4 $0.61{\pm}1.44{\mu}m$ G5 $0{\pm}0{\mu}m$. The mean interfacial delamination crack lengths were G1 $131{\pm}54.5{\mu}m$, G2 $85.2{\pm}51.3{\mu}m$, and G3 $94.9{\pm}81.8{\mu}m$. One-way ANOVA showed that there was no statistically significant difference in interfacial crack length among G1, G2 and G3(p> 0.05). Conclusion. The investment reaction layer played important role at the interfacial toughness of body ceramic bonded to Lithia-based ceramic.

3D Hierarchical Heterostructure of TiO2 Nanorod/Carbon Layer/NiMn-Layered Double Hydroxide Nanosheet

  • Zhao, Wei;Jung, Hyunsung
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.365-371
    • /
    • 2018
  • 1D core-shell nanostructures have attracted great attention due to their enhanced physical and chemical properties. Specifically, oriented single-crystalline $TiO_2$ nanorods or nanowires on a transparent conductive substrate would be more desirable as the building core backbone. However, a facile approach to produce such structure-based hybrids is highly demanded. In this study, a three-step hydrothermal method was developed to grow NiMn-layered double hydroxide-decorated $TiO_2$/carbon core-shell nanorod arrays on transparent conductive fluorine-doped tin oxide (FTO) substrates. XRD, SEM, TEM, XPS and Raman were used to analyze the obtained samples. The in-situ fabricated hybrid nanostructured materials are expected to be applicable for photoelectrode working in water splitting.

Synthesis and Characterization of Brilliant Yellow Color Pigments using α-FeOOH Nanorods (α-FeOOH 나노로드를 이용한 선명한 황색 안료 합성 연구)

  • Yun, JiYeon;Yu, Ri;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.23 no.6
    • /
    • pp.453-457
    • /
    • 2016
  • In this work, we synthesize brilliant yellow color ${\alpha}$-FeOOH by controlling the rod length and core-shell structure. The characteristics of ${\alpha}$-FeOOH nanorods are controlled by the reaction conditions. In particular, the length of the ${\alpha}$-FeOOH rods depends on the concentration of the raw materials, such as the alkali solution. The length of the nanorods is adjusted from 68 nm to 1435 nm. Their yellowness gradually increases, with the highest $b^*$ value of 57 based on the International Commission on Illumination (CIE) Lab system, by controlling the nanorod length. A high quality yellow color is obtained after formation of a silica coating on the ${\alpha}$-FeOOH structure. The morphology and the coloration of the nal products are investigated in detail by X-ray diffraction, scanning electron microscopy, UV-vis spectroscopy, and the CIE Lab color parameter measurements.

FINITE ELEMENT ANALYSIS OF MAXILLARY CENTRAL INCISORS RESTORED WITH VARIOUS POST-AND-CORE APPLICATIONS (여러가지 post-and-core로 수복된 상악 중절치의 유한요소법적 연구)

  • Seo, Min-Seock;Shon, Won-Jun;Lee, Woo-Cheol;Yoo, Hyun-Mi;Cho, Byeong-Hoon;Baek, Seung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.4
    • /
    • pp.324-332
    • /
    • 2009
  • The purpose of this study was to investigate the effect of rigidity of post core systems on stress distribution by the theoretical technique, finite element stress-analysis method. Three-dimensional finite element models simulating an endodontically treated maxillary central incisor restored with a zirconia ceramic crown were prepared and 1.5 mm ferrule height was provided. Each model contained cortical bone, trabecular bone, periodontal ligament, 4 mm apical root canal filling, and post-and-core. Six combinations of three parallel type post (zirconia ceramic, glass fiber, and stainless steel) and two core (Paracore and Tetric ceram) materials were evaluated, respectively. A 50 N static occlusal load was applied to the palatal surface of the crown with a $60^{\circ}$angle to the long axis of the tooth. The differences in stress transfer characteristics of the models were analyzed. von Mises stresses were chosen for presentation of results and maximum displacement and hydrostatic pressure were also calculated. An increase of the elastic modulus of the post material increased the stress, but shifted the maximum stress location from the dentin surface to the post material. Buccal side of cervical region (junction of core and crown) of the glass fiber post restored tooth was subjected to the highest stress concentration. Maximum von Mises stress in the remaining radicular tooth structure for low elastic modulus resin core (29.21 MPa) was slightly higher than that for high elastic modulus resin core (29.14 MPa) in case of glass fiber post. Maximum displacement of glass fiber post restored tooth was higher than that of zirconia ceramic or stainless steel post restored tooth.

Retrospective clinical and radiographic evaluation of restored endodontically treated teeth

  • Paula Pontes Garcia ;Aline Cappoani ;Ricardo Susin Schelbauer ;Gisele Maria Correr ;Carla Castiglia Gonzaga
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.4
    • /
    • pp.49.1-49.11
    • /
    • 2020
  • Objectives: The aim of this study was to perform a clinical and radiographic analysis of endodontically treated teeth (ETT) restored with cast metal posts (CMPs) or prefabricated glass fiber posts (GFPs) and crowns. Materials and Methods: Fifty ETT were restored with 25 CMPs and 25 GFPs at a private dental clinic between 2001 and 2016. The restorations consisted of 12 all-ceramic crowns, 31 metal-ceramic crowns, and 7 composite resin crowns. Demographic data, type of teeth, type of post-and-core system, time of placement, crown restorations, the number of proximal contacts, the type of antagonist, and reports of any complications after post-and-core placement were recorded for each patient. Assessments were performed at baseline (radiographic) and follow-up (radiographic and clinical). Data were analyzed by the McNemar test, the Pearson χ2 test, and Kaplan-Meier survival curves (α = 0.05). The mean follow-up was 67.6 months. Results: No significant difference was observed for any of the radiographic parameters when the baseline and final radiographs were compared. In the clinical evaluation, anatomical form (p = 0.009) and occlusion (p = 0.001) showed significant differences according to the type of crown restoration; specifically, metal-ceramic and all-ceramic crowns outperformed composite resin crowns. Conclusions: CMPs and GFPs showed favorable results for restoring ETT after 6 years of follow-up. All-ceramic and metal-ceramic crowns showed higher survival rates and better clinical outcomes.

SPECTROPHOTOMETRIC ANALYSIS OF THE INFLUENCE OF ZIRCONIA CORE ON THE COLOR OF CERAMIC (지르코니아 코아가 전부도재관의 색조에 미치는 영향에 대한 분광측색분석)

  • Pae Ah-Ran;Baik Jin;Woo Yi-Hyung;Kim Hyung-Sup;Choi Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.466-477
    • /
    • 2005
  • Statement of problem : Problem of matching the appearance of porcelain restorations with the patient's natural dentition has always been a concern to dental clinicians. Recently, demands for esthetics, even in restorations requiring strength, has brought a revolution to dentistry and increased use of zirconia. Among the various factors, shade and translucency or the core can significantly affect the overall esthetics of the restoration and should be considered when selecting an all-ceramic system. Purpose : The purpose of this study was to spectrophotometrically evaluate the influence of different zirconia systems and core thickness on the final shade of all-ceramic restorations using the CIEL$^*a^*b^*$ system. Material and Methods: Core specimens (n : 20 per group) of In-Ceram Alumina, In-Ceram Zirconia, Digident CAD/CAM Zirconia, Cercon Zirconia were fabricated 20mm in diameter. 10 specimens of each group were fabricated at core thickness of 0.5mm and 0.7mm. These core specimens were veneered with shade Al & A3 porcelain of the recommended manufacturer. CIEL$^*a^*b^*$ coordinates were recorded for each specimen with a spectrophotometer (Model CM-2600d, Minolta, Japan). Color differences were calculated using the equation ${\Delta}E^*=[({\Delta}L^*)^2+({\Delta}a^*)^2+({\Delta}b^*)^2]^{\frac{1}{2}}$. Results : 1. Specimens of core thickness 0.5mm and 0.7mm did not exhibit clinically perceived color difference. 2. Regarding shade reproducibility, In-Ceram Alumina and In-Ceram Zirconia showed significant difference within each group. 3. Cercon Zirconia group showed the highest $L^*$ value and Digident Zirconia group showed lowest $a^*$ & $b^*$ value. 4. Generally the shade difference between materials was higher in the A3 shade group than in the Al shade group. Conclusion: Within the limitations of this study, there was no color difference after increase in core thickness and every all-ceramic system has color characteristics that clinicians have to consider when selecting materials. Also, manufacturers of different porcelain systems must make every effort to achieve color reproducibility.

A COMPARISON OF THE FIDELITY BETWEEN VARIOUS CORES FABRICATED WITH CAD/CAM SYSTEMS

  • Park, Sun-Hee;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.269-279
    • /
    • 2008
  • STATEMENT OF PROBLEM: Recently, various all-ceramic crowns fabricated with CAD/CAM systems have come into wide use in dental clinic. However, there are only few domestic studies on CAD/CAM restorations. PURPOSE: Purpose of this study was to compare the fidelity (absolute marginal discrepancy and internal gap) between various cores fabricated with different CAD/CAM systems (Procera system, Lava system, Cerec inLab system) and conventional metal cast core. MATERIALS AND METHODS: 10 cores per each system were fabricated. The absolute marginal discrepancies were measured using measuring microscope and digital counter. The internal gaps were calculated using a silicone paste. The results were statistically analyzed using the one-way ANOVA test and Tukey's HSD test. RESULTS: Within the limits of this study the results were as follows. 1. The absolute marginal discrepancies were $32.5{\pm}3.7\;{\mu}m$ for metal cast core, $72.2{\pm}7.0\;{\mu}m$ for Procera core, $40.8{\pm}5.4\;{\mu}m$ for Lava core, and $55.3{\pm}8.7\;{\mu}m$ for Cerec inLab core. The internal gaps were $38.4{\pm}5.7\;{\mu}m$ for metal cast core, $71.4{\pm}5.3\;{\mu}m$ for Procera core, $45.9{\pm}7.3\;{\mu}m$ for Lava core, and $51.8{\pm}6.2\;{\mu}m$ for Cerec inLab core. 2. The fidelity of metal cast core showed the smallest gaps, followed by Lava core, Cerec inLab core, and Procera core. CONCLUSION: The fidelities of 4 core groups were all within the clinically acceptable range ($120\;{\mu}m$).