• Title/Summary/Keyword: cell-cell interaction

Search Result 1,342, Processing Time 0.028 seconds

Immortalization of Rat Kidney Glomerular Mesangial Cell and Its Coculture with Glomerular Epithelial Cell

  • Toshinobu Kida;Sachi Fujishima;Masatoshi Matsumra;Wang, Pi-Chao
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.2
    • /
    • pp.92-98
    • /
    • 2000
  • Mesangial cell has several key roles in thee control of glomerular function: it partocipates in the regulation of glomerular filtration rate, macromolecular clearance, and as both a source and target of numerous hormones and autocrines. Many of these insights into mesangial cell function have been obtained by studying mesangial cells in culture. However, no suitble cell lines have established yet. We here reported the immortalization of rat kidney glomeruar mesangial cell by transfection of E6 and E7 genes of human papillomavirus type 16 (HPV-16) via electroporation and lipofection. The reslts showed that only electroporation could transfect the genes to mesangial cells and the transfected cells maintained the viability for longer than 6 months. Fluorescence microscopic observation showed that cellular contractility and phagocytosis, which are the two main phenotypes of mesangial cells with rat glomerular epithelial cells showed that the growth of mesangial dells was suppressed by epithelial cell, but the growth of epithelisl cells was enhanced by mesangial cells. Moreover, Such results may imply that the glomerular cell-cell interaction plays an important role in the regulation of cell proliferation and differentiation.

  • PDF

Generation and characterization of 1H8 monoclonal antibody against human bone marrow stromal cells

  • Kang, Hyung Sik;Choi, Inpyo
    • IMMUNE NETWORK
    • /
    • v.1 no.1
    • /
    • pp.14-25
    • /
    • 2001
  • Background: Bone marrow stromal cells (BMSCs) express many cell surface molecules, which regulate the proliferation and differentiation of immune cells within the bone marrow. Methods: To identify cell surface molecules, which can regulate cell proliferation through cell interaction, monoclonal antibodies (MoAbs) against BMSCs were produced. Among them, 1H8 MoAb, which recognized distinctly an 80 kDa protein, abolished myeloma cell proliferation that was induced by co-culturing with BMSCs. Results: IL-6 gene expression was increased when myeloma or stromal cells were treated with 1H8 MoAb. In addition, the expression of IL-6 receptor and CD40 was up-regulated by 1H8 treatment, suggesting that the molecule recognized by 1H8 MoAb is involved in cell proliferation by modulating the expression of cell growth-related genes. Myeloma cells contain high levels of reactive oxygen species (ROS), which are related to gene expression and tumorigenesis. Treatment with 1H8 decreased the intracellular ROS level and increased PAG antioxidant gene concomitantly. Finally, 1H8 induced the tyrosine phosphorylation of several proteins in U266. Conclusion: Taken together, 1H8 MoAb recognized the cell surface molecule and triggered the intracellular signals, which led to modulate gene expression and cell proliferation.

  • PDF

Actin Engine in Immunological Synapse

  • Piragyte, Indre;Jun, Chang-Duk
    • IMMUNE NETWORK
    • /
    • v.12 no.3
    • /
    • pp.71-83
    • /
    • 2012
  • T cell activation and function require physical contact with antigen presenting cells at a specialized junctional structure known as the immunological synapse. Once formed, the immunological synapse leads to sustained T cell receptor-mediated signalling and stabilized adhesion. High resolution microscopy indeed had a great impact in understanding the function and dynamic structure of immunological synapse. Trends of recent research are now moving towards understanding the mechanical part of immune system, expanding our knowledge in mechanosensitivity, force generation, and biophysics of cell-cell interaction. Actin cytoskeleton plays inevitable role in adaptive immune system, allowing it to bear dynamic and precise characteristics at the same time. The regulation of mechanical engine seems very complicated and overlapping, but it enables cells to be very sensitive to external signals such as surface rigidity. In this review, we focus on actin regulators and how immune cells regulate dynamic actin rearrangement process to drive the formation of immunological synapse.

Current Understanding of Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) Signaling in T-Cell Biology and Disease Therapy

  • Kim, Gil-Ran;Choi, Je-Min
    • Molecules and Cells
    • /
    • v.45 no.8
    • /
    • pp.513-521
    • /
    • 2022
  • Cytotoxic T lymphocyte antigen-4 (CTLA-4) is an immune checkpoint molecule that is mainly expressed on activated T cells and regulatory T (Treg) cells that inhibits T-cell activation and regulates immune homeostasis. Due to the crucial functions of CTLA-4 in T-cell biology, CTLA-4-targeted immunotherapies have been developed for autoimmune disease as well as cancers. CTLA-4 is known to compete with CD28 to interact with B7, but some studies have revealed that its downstream signaling is independent of its ligand interaction. As a signaling domain of CTLA-4, the tyrosine motif plays a role in inhibiting T-cell activation. Recently, the lysine motif has been shown to be required for the function of Treg cells, emphasizing the importance of CTLA-4 signaling. In this review, we summarize the current understanding of CTLA-4 biology and molecular signaling events and discuss strategies to target CTLA-4 signaling for immune modulation and disease therapy.

Computational approaches for prediction of protein-protein interaction between Foot-and-mouth disease virus and Sus scrofa based on RNA-Seq

  • Park, Tamina;Kang, Myung-gyun;Nah, Jinju;Ryoo, Soyoon;Wee, Sunghwan;Baek, Seung-hwa;Ku, Bokkyung;Oh, Yeonsu;Cho, Ho-seong;Park, Daeui
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.2
    • /
    • pp.73-83
    • /
    • 2019
  • Foot-and-Mouth Disease (FMD) is a highly contagious trans-boundary viral disease caused by FMD virus, which causes huge economic losses. FMDV infects cloven hoofed (two-toed) mammals such as cattle, sheep, goats, pigs and various wildlife species. To control the FMDV, it is necessary to understand the life cycle and the pathogenesis of FMDV in host. Especially, the protein-protein interaction between FMDV and host will help to understand the survival cycle of viruses in host cell and establish new therapeutic strategies. However, the computational approach for protein-protein interaction between FMDV and pig hosts have not been applied to studies of the onset mechanism of FMDV. In the present work, we have performed the prediction of the pig's proteins which interact with FMDV based on RNA-Seq data, protein sequence, and structure information. After identifying the virus-host interaction, we looked for meaningful pathways and anticipated changes in the host caused by infection with FMDV. A total of 78 proteins of pig were predicted as interacting with FMDV. The 156 interactions include 94 interactions predicted by sequence-based method and the 62 interactions predicted by structure-based method using domain information. The protein interaction network contained integrin as well as STYK1, VTCN1, IDO1, CDH3, SLA-DQB1, FER, and FGFR2 which were related to the up-regulation of inflammation and the down-regulation of cell adhesion and host defense systems such as macrophage and leukocytes. These results provide clues to the knowledge and mechanism of how FMDV affects the host cell.

Synergistic Effect of Flavonoids from Artocarpus heterophyllus Heartwoods on Anticancer Activity of Cisplatin Against H460 and MCF-7 Cell Lines

  • Daud, Nik Nurul Najihah Nik Mat;Septama, Abdi Wira;Simbak, Nordin;Bakar, Nor Hidayah Abu;Rahmi, Eldiza Puji
    • Natural Product Sciences
    • /
    • v.25 no.4
    • /
    • pp.311-316
    • /
    • 2019
  • Artocarpus heterophyllus has been used as traditional medicine. This plant is one of the sources of flavonoid. Flavonoid compounds possessed a wide range of biological properties including anticancer. This study was performed to investigate the cytotoxic effect of flavonoids from A. heterophyllus on H460 and MCF-7 cell lines. The interaction of flavonoids and cisplatin against tested cancer cells was also evaluated. MTT assay was used to determine the cytotoxic effect of flavonoid. Isobologram analysis was selected to evaluate the synergistic effect between flavonoid and cisplatin, their interaction was then confirmed using AO/PI staining method. Amongst of flavonoid compounds, artocarpin exhibited strong cytotoxic effect on both MCF-7 and H460 cell lines with IC50 values of 12.53 ㎍/mL (28.73 μM) and 9.77 ㎍/mL (22.40 μM), respectively. This compound enhanced anticancer activity of cisplatin against H460 and MCF-7. The combination produced a synergistic effect on H460 and MCF-7 cell lines with a combination index (CI) values of 0.2 and 0.18, respectively. The AO/PI stained demonstrated that the combination of artocarpin and cisplatin caused morphological changes that indicated apoptosis. Moreover, artocarpanone also significantly increased cytotoxic effect of cisplatin compared to its single concentration with CI below than 1. This result suggested the potency of flavonoid named artocarpin to enhance the anticancer activity of cisplatin on H460 and MCF-7 cell lines.

Epidermal growth factor receptor overexpression and K-ras mutation detection in the oral squamous cell carcinoma (구강편평상피암종에서 상피성장인자 수용체의 과발현과 K-ras 유전자 변이)

  • Moon, Byeong-Chool;Han, Se-Jin;Jeong, Dong-Jun;Kim, Kyung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.5
    • /
    • pp.396-402
    • /
    • 2011
  • Introduction: Epidermal growth factor is a single-chain polypeptide consisting of 53 amino acids with potent mitogenic activity that stimulates the proliferation of a range of normal and neoplastic cells through an interaction with its specific receptor (epidermal growth factor receptor, EGFR). This interaction plays a key role in tumor progression including the induction of tumor cell proliferation. An increased EGFR copy number have been associated with a favorable response to EGFR tyrosine kinase inhibitors therapy. In contrast, K-ras mutations tend to predict a poor response to such therapy. The aim of this study was to determine the correlation between the clinicopathological factors and the up-regulation of EGFR expression and Kras mutations in oral squamous cell carcinoma. Materials and Methods: This study examined the immunohistochemical staining of EGFR, K-ras mutation detection with peptide nucleic acid (PNA)-based real-time polymerase chain reaction (PCR) clamping in 20 specimens from 20 patients with oral squamous cell carcinoma. Results: 1. In the immunohistochemical study of poorly differentiated and invasive oral squamous cell carcinoma, a high level of EGFR staining was observed. The correlation between immunohistochemical EGFR expression and histological differentiation, as well as the tumor size of the specimens was significant (Pearson correlation analysis, significance [r] >0.5, P<0.05). 2. In PNA-based real-time PCR clamping analysis, a K-ras mutation was not detected in all specimens. Conclusion: These findings suggest that the up-regulation of the EGFR may play a role in the progression and invasion of oral squamous cell carcinoma that is, independent of a K-ras mutation.

Differential antiangiogenic and anticancer activities of the active metabolites of ginsenoside Rg3

  • Maryam Nakhjavani;Eric Smith;Kenny Yeo;Yoko Tomita;Timothy J. Price;Andrea Yool;Amanda R. Townsend;Jennifer E. Hardingham
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.171-180
    • /
    • 2024
  • Background: Epimers of ginsenoside Rg3 (Rg3) have a low bioavailability and are prone to deglycosylation, which produces epimers of ginsenoside Rh2 (S-Rh2 and R-Rh2) and protopanaxadiol (S-PPD and R-PPD). The aim of this study was to compare the efficacy and potency of these molecules as anti-cancer agents. Methods: Crystal violet staining was used to study the anti-proliferatory action of the molecules on a human epithelial breast cancer cell line, MDA-MB-231, and human umbilical vein endothelial cells (HUVEC) and compare their potency. Cell death and cell cycle were studied using flow cytometry and mode of cell death was studied using live cell imaging. Anti-angiogenic effects of the drug were studied using loop formation assay. Molecular docking showed the interaction of these molecules with vascular endothelial growth factor receptor-2 (VEGFR2) and aquaporin (AQP) water channels. VEGF bioassay was used to study the interaction of Rh2 with VEGFR2, in vitro. Results: HUVEC was the more sensitive cell line to the anti-proliferative effects of S-Rh2, S-PPD and R-PPD. The molecules induced necroptosis/necrosis in MDA-MB-231 and apoptosis in HUVEC. S-Rh2 was the most potent inhibitor of loop formation. In silico molecular docking predicted a good binding score between Rh2 or PPD and the ATP-binding pocket of VEGFR2. VEGF bioassay showed that Rh2 was an allosteric modulator of VEGFR2. In addition, SRh2 and PPD had good binding scores with AQP1 and AQP5, both of which play roles in cell migration and proliferation. Conclusion: The combination of these molecules might be responsible for the anti-cancer effects observed by Rg3.

Functional and Physical Interaction between Human Lactate Dehydrogenase B and $Na^+/H^+$ Exchanger Isoform 1

  • Kim, Eun-Hee
    • Animal cells and systems
    • /
    • v.13 no.3
    • /
    • pp.283-288
    • /
    • 2009
  • The ubiquitous plasma membrane $Na^+/H^+$ exchanger 1 (NHE1) is rapidly activated in response to various extracellular stimuli and maintains normal cytoplasmic pH. Yeast two-hybrid screening was used in order to identify proteins interacting with NHE1 using its cytoplasmic domain as a bait from HeLa cDNA library. One of the interacting cDNA clones was human Lactate dehydrogenase B (LDHB). In vitro translated LDHB was pulled down together with GST-NHE1.cd protein in the GST pull down assay, confirming the interaction in vitro. LDHB antibody immunoprecipitated endogenous LDHB together with NHE1 from H9c2 cells, validating cellular interaction between NHE1 and LDHB. Subsequent analysis revealed that the overexpression of LDHB increased intracellular PH, implying opening of the NHE1 transporter. Moreover, overexpression of LDHB activated caspase 3 and induced cell death, consistent with the expected phenotype of hyper-activation of NHE1. Collectively, our data indicate that LDHB modulates NHE1 activity via physical interaction.

Mathematical Description and Prognosis of Cell Recovery after Thermoradiation Action

  • Komarova, Ludmila N.;Kim, Jin-Kyu;Petin, Vladislav G.
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • A mathematical model for the synergistic interaction of physical and chemical environmental agents was suggested for quantitative prediction of irreversibly damaged cells after combined exposures. The model took into account the synergistic interaction of agents and was based on the supposition that additional effective damages responsible for the synergy are irreversible and originated from an interaction of ineffective sublesions. The experimental results regarding the irreversible component of radiation damage of diploid yeast cells simultaneous exposed to heat with ionizing radiation ($^{60}Co$) or UV light (254 nm) are presented. It was shown that the cell ability of the liquid holding recovery decreased with an increase in the temperature, at which the exposure was occurred. A good correspondence between experimental results and model prediction was demonstrated. The importance of the results obtained for the interpretation of the mechanism of synergistic interaction of various environmental factors is discussed.