Browse > Article
http://dx.doi.org/10.4110/in.2012.12.3.71

Actin Engine in Immunological Synapse  

Piragyte, Indre (Immune Synapse Research Center and Cell Dynamics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology)
Jun, Chang-Duk (Immune Synapse Research Center and Cell Dynamics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology)
Publication Information
IMMUNE NETWORK / v.12, no.3, 2012 , pp. 71-83 More about this Journal
Abstract
T cell activation and function require physical contact with antigen presenting cells at a specialized junctional structure known as the immunological synapse. Once formed, the immunological synapse leads to sustained T cell receptor-mediated signalling and stabilized adhesion. High resolution microscopy indeed had a great impact in understanding the function and dynamic structure of immunological synapse. Trends of recent research are now moving towards understanding the mechanical part of immune system, expanding our knowledge in mechanosensitivity, force generation, and biophysics of cell-cell interaction. Actin cytoskeleton plays inevitable role in adaptive immune system, allowing it to bear dynamic and precise characteristics at the same time. The regulation of mechanical engine seems very complicated and overlapping, but it enables cells to be very sensitive to external signals such as surface rigidity. In this review, we focus on actin regulators and how immune cells regulate dynamic actin rearrangement process to drive the formation of immunological synapse.
Keywords
Actin; Immunological synapse; Regulation; T cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang, C., S. C. Morley, D. Donermeyer, I. Peng, W. P. Lee, J. Devoss, D. M. Danilenko, Z. Lin, J. Zhang, J. Zhou, P. M. Allen, and E. J. Brown. 2010. Actin-bundling protein L-plastin regulates T cell activation. J. Immunol. 185: 7487-7497.   DOI   ScienceOn
2 Wabnitz, G. H., P. Lohneis, H. Kirchgessner, B. Jahraus, S. Gottwald, M. Konstandin, M. Klemke, and Y. Samstag. 2010. Sustained LFA-1 cluster formation in the immune synapse requires the combined activities of L-plastin and calmodulin. Eur. J. Immunol. 40: 2437-2449.   DOI   ScienceOn
3 Faroudi, M., R. Zaru, P. Paulet, S. Müller, and S. Valitutti. 2003. Cutting edge: T lymphocyte activation by repeated immunological synapse formation and intermittent signaling. J. Immunol. 171: 1128-1132.   DOI
4 Cernuda-Morollón, E., J. Millán, M. Shipman, F. M. Marelli- Berg, and A. J. Ridley. 2010. Rac activation by the T-cell receptor inhibits T cell migration. PLoS One 5: e12393.   DOI
5 Alarcón, B., D. Mestre, and N. Martínez-Martín. 2011. The immunological synapse: a cause or consequence of T-cell receptor triggering? Immunology 133: 420-425.   DOI   ScienceOn
6 Hashimoto-Tane, A., T. Yokosuka, K. Sakata-Sogawa, M. Sakuma, C. Ishihara, M. Tokunaga, and T. Saito. 2011. Dynein-driven transport of T cell receptor microclusters regulates immune synapse formation and T cell activation. Immunity 34: 919-931.   DOI   ScienceOn
7 Varma, R., G. Campi, T. Yokosuka, T. Saito, and M. L. Dustin. 2006. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25: 117-127.   DOI   ScienceOn
8 Dustin, M. L. 2008. T-cell activation through immunological synapses and kinapses. Immunol. Rev. 221: 77-89.   DOI   ScienceOn
9 Duleh, S. N., and M. D. Welch. 2010. WASH and the Arp2/3 complex regulate endosome shape and trafficking. Cytoskeleton (Hoboken) 67: 193-206.
10 Liu, R., M. T. Abreu-Blanco, K. C. Barry, E. V. Linardopoulou, G. E. Osborn, and S. M. Parkhurst. 2009. Wash functions downstream of Rho and links linear and branched actin nucleation factors. Development 136: 2849-2860.   DOI   ScienceOn
11 Jia, D., T. S. Gomez, Z. Metlagel, J. Umetani, Z. Otwinowski, M. K. Rosen, and D. D. Billadeau. 2010. WASH and WAVE actin regulators of the Wiskott-Aldrich syndrome protein (WASP) family are controlled by analogous structurally related complexes. Proc. Natl. Acad. Sci. U. S. A. 107: 10442-10447.   DOI   ScienceOn
12 Kelleher, J. F., S. J. Atkinson, T. D. Pollard. 1995. Sequences, structural models, and cellular localization of the actin-related proteins Arp2 and Arp3 from Acanthamoeba. J. Cell Biol. 131: 385-397.   DOI   ScienceOn
13 Goley, E. D., and M. D. Welch. 2006. The ARP2/3 complex: an actin nucleator comes of age. Nat. Rev. Mol. Cell Biol.7: 713-726.   DOI   ScienceOn
14 Reicher, B., and M. Barda-Saad. 2010. Multiple pathways leading from the T-cell antigen receptor to the actin cytoskeleton network. FEBS Lett. 584: 4858-4864.   DOI   ScienceOn
15 Dustin, M. L., M. W. Olszowy, A. D. Holdorf, J. Li, S. Bromley, N. Desai, P. Widder, F. Rosenberger, P. A. van der Merwe, P. M. Allen, and A. S. Shaw. 1998. A novel adaptor protein orchestrates receptor patterning and cytoskeletal polarity in T-cell contacts. Cell 94: 667-677   DOI   ScienceOn
16 Hotulainen, P., E. Paunola, M. K. Vartiainen, P. Lappalainen. 2005. Actin-depolymerizing factor and cofilin-1 play overlapping roles in promoting rapid F-actin depolymerization in mammalian nonmuscle cells. Mol. Biol. Cell 16: 649-664.
17 Lee, K. H., S. C. Meuer, and Y. Samstag. 2000. Cofilin: a missing link between T cell co-stimulation and rearrangement of the actin cytoskeleton. Eur. J. Immunol. 30: 892-899.   DOI   ScienceOn
18 Gomez, T. S., M. J. Hamann, S. McCarney, D. N. Savoy, C. M. Lubking, M. P. Heldebrant, C. M. Labno, D. J. McKean, M. A. McNiven, J. K. Burkhardt, and D. D. Billadeau. 2005. Dynamin 2 regulates T cell activation by controlling actin polymerization at the immunological synapse. Nat. Immunol. 6: 261-270.   DOI   ScienceOn
19 Hogg, N., I. Patzak, and F. Willenbrock. 2011. The insider's guide to leukocyte integrin signalling and function. Nat. Rev. Immunol. 11: 416-426.   DOI   ScienceOn
20 Calabia-Linares, C., J. Robles-Valero, H. de la Fuente, M. Perez-Martinez, N. Martín-Cofreces, M. Alfonso-Perez, C. Gutierrez-Vazquez, M. Mittelbrunn, S. Ibiza, F. R. Urbano- Olmos, C. Aguado-Ballano, C. O. Sanchez-Sorzano, F. Sanchez-Madrid, and E. Veiga. 2011. Endosomal clathrin drives actin accumulation at the immunological synapse. J. Cell Sci. 124: 820-830.   DOI   ScienceOn
21 Yamazaki, D., S. Suetsugu, H. Miki, Y. Kataoka, S. Nishikawa, T. Fujiwara, N. Yoshida, and T. Takenawa. 2003. WAVE2 is required for directed cell migration and cardiovascular development. Nature 424: 452-456.   DOI   ScienceOn
22 Gomez, T. S., and D. D. Billadeau. 2009. A FAM21-containing WASH complex regulates retromer-dependent sorting.Dev. Cell 17: 699-711.
23 Maillard, M. H., V. Cotta-de-Almeida, F. Takeshima, D. D. Nguyen, P. Michetti, C. Nagler, A. K. Bhan, and S. B. Snapper. 2007. The Wiskott-Aldrich syndrome protein is required for the function of CD4(+)CD25(+)Foxp3(+) regulatory T cells. J. Exp. Med. 204: 381-391.   DOI   ScienceOn
24 Suetsugu, S., H. Miki, and T. Takenawa. 1999. Identification of two human WAVE/SCAR homologues as general actin regulatory molecules which associate with the Arp2/3 complex. Biochem. Biophys. Res. Commun. 260: 296-302.   DOI   ScienceOn
25 Gallego, M. D., M. Santamaría, J. Peña, and I. J. Molina. 1997. Defective actin reorganization and polymerization of Wiskott-Aldrich T cells in response to CD3-mediated stimulation. Blood 90: 3089-3097.
26 Becker-Herman, S., A. Meyer-Bahlburg, M. A. Schwartz, S. W. Jackson, K. L. Hudkins, C. Liu, B. D. Sather, S. Khim, D. Liggitt, W. Song, G. J. Silverman, C. E. Alpers, and D. J. Rawlings. 2011. WASp-deficient B cells play a critical, cell-intrinsic role in triggering autoimmunity. J. Exp. Med.208: 2033-2042.   DOI   ScienceOn
27 Bouma, G., A. Mendoza-Naranjo, M. P. Blundell, E. de Falco, K. L. Parsley, S. O. Burns, and A. J. Thrasher. 2011. Cytoskeletal remodeling mediated by WASp in dendritic cells is necessary for normal immune synapse formation and T-cell priming. Blood 118: 2492-2501.   DOI   ScienceOn
28 Ridley, A. J. 2011. Life at the leading edge. Cell 145: 1012-1022.   DOI   ScienceOn
29 Takenawa, T., and H. Miki. 2001. WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. J. Cell Sci. 114: 1801-1809.
30 Eden, S., R. Rohatgi, A. V. Podtelejnikov, M. Mann, and M. W. Kirschner. 2002. Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418: 790-793.   DOI   ScienceOn
31 Steffen, A., K. Rottner, J. Ehinger, M. Innocenti, G. Scita, J. Wehland, and T. E. Stradal. 2004. Sra-1 and Nap1 link Rac to actin assembly driving lamellipodia formation. EMBOJ. 23: 749-759.   DOI   ScienceOn
32 Leng, Y., J. Zhang, K. Badour, E. Arpaia, S. Freeman, P. Cheung, M. Siu, and K. Siminovitch. 2005. Abelson-interactor- 1 promotes WAVE2 membrane translocation and Abelson-mediated tyrosine phosphorylation required for WAVE2 activation. Proc. Natl. Acad. Sci. U. S. A. 102: 1098-1103.   DOI   ScienceOn
33 Nolz, J. C., T. S. Gomez, P. Zhu, S. Li, R. B. Medeiros, Y. Shimizu, J. K. Burkhardt, B. D. Freedman, and D. D. Billadeau. 2006. The WAVE2 complex regulates actin cytoskeletal reorganization and CRAC-mediated calcium entry during T cell activation. Curr. Biol. 16: 24-34.   DOI   ScienceOn
34 de la Fuente, M. A., Y. Sasahara, M. Calamito, I. M. Antón, A. Elkhal, M. D. Gallego, K. Suresh, K. Siminovitch, H. D. Ochs, K. C. Anderson, F. S. Rosen, R. S. Geha, and N. Ramesh. 2007. WIP is a chaperone for Wiskott-Aldrich syndrome protein (WASP). Proc. Natl. Acad. Sci. U. S. A. 104:926-931.   DOI   ScienceOn
35 Orange, J. S., S. Roy-Ghanta, E. M. Mace, S. Maru, G. D. Rak, K. B. Sanborn, A. Fasth, R. Saltzman, A. Paisley, L. Monaco-Shawver, P. P. Banerjee, and R. Pandey. 2011. IL-2 induces a WAVE2-dependent pathway for actin reorganization that enables WASp-independent human NK cell function. J. Clin. Invest. 121: 1535-1548.   DOI   ScienceOn
36 Yan, C., N. Martinez-Quiles, S. Eden, T. Shibata, F. Takeshima, R. Shinkura, Y. Fujiwara, R. Bronson, S. B. Snapper, M. W. Kirschner, R. Geha, F. S. Rosen, and F. W. Alt. 2003. WAVE2 deficiency reveals distinct roles in embryogenesis and Rac-mediated actin-based motility. EMBO J.22: 3602-3612.   DOI   ScienceOn
37 Chou, H. C., I. M. Antón, M. R. Holt, C. Curcio, S. Lanzardo, A. Worth, S. Burns, A. J. Thrasher, G. E. Jones, and Y. Calle. 2006. WIP regulates the stability and localization of WASP to podosomes in migrating dendritic cells. Curr. Biol. 16: 2337-2344.   DOI   ScienceOn
38 Ramesh, N., and R. Geha. 2009. Recent advances in the biology of WASP and WIP. Immunol. Res. 44: 99-111.   DOI   ScienceOn
39 Le Bras, S., M. Massaad, S. Koduru, L. Kumar, M. K. Oyoshi, J. Hartwig, and R. S. Geha. 2008. WIP is critical for T cell responsiveness to IL-2. Proc Natl. Acad. Sci. U. S. A. 106:7519-7524.
40 Abdul-Manan, N., B. Aghazadeh, G. A. Liu, A. Majumdar, O. Ouerfelli, K. A. Siminovitch, and M. K. Rosen. 1999. Structure of Cdc42 in complex with the GTPase-binding domain of the 'Wiskott-Aldrich syndrome' protein. Nature 399:379-383.   DOI   ScienceOn
41 Tomasevic, N., Z. Jia, A. Russell, T. Fujii, J. J. Hartman, S. Clancy, M. Wang, C. Beraud, K. W. Wood, and R. Sakowicz. 2007. Differential regulation of WASP and NWASP by Cdc42, Rac1, Nck, and PI(4,5)P2. Biochemistry 46:3494-3502.   DOI   ScienceOn
42 Pauker, M. H., B. Reicher, S. Fried, O. Perl, and M. Barda-Saad. 2011. Functional cooperation between the proteins Nck and ADAP is fundamental for actin reorganization. Mol. Cell Biol. 31: 2653-2666.   DOI   ScienceOn
43 Zhang, J., A. Shehabeldin, L. A. da Cruz, J. Butler, A. K. Somani, M. McGavin, I. Kozieradzki, A. O. dos Santos, A. Nagy, S. Grinstein, J. M. Penninger, and K. A. Siminovitch. 1999. Antigen receptor-induced activation and cytoskeletal rearrangement are impaired in Wiskott-Aldrich syndrome protein-deficient lymphocytes. J. Exp. Med. 190: 1329-1342.   DOI   ScienceOn
44 Padrick, S. B., H. C. Cheng, A. M. Ismail, S. C. Panchal, L. K. Doolittle, S. Kim, B. M. Skehan, J. Umetani, C. A. Brautigam, J. M. Leong, and M. K. Rosen. 2008. Hierarchical regulation of WASP/WAVE proteins. Mol. Cell 32: 426-438.   DOI   ScienceOn
45 Badour, K., J. Zhang, F. Shi, Y. Leng, M. Collins, and K. A. Siminovitch. 2004. Fyn and PTP-PEST-mediated regulation of Wiskott-Aldrich syndrome protein (WASp) tyrosine phosphorylation is required for coupling T cell antigen receptor engagement to WASp effector function and T cell activation. J. Exp. Med. 199: 99-112.   DOI
46 Snapper, S. B., F. S. Rosen, E. Mizoguchi, P. Cohen, W. Khan, C. H. Liu, T. L. Hagemann, S. P. Kwan, R. Ferrini, L. Davidson, A. K. Bhan, and F. W. Alt. 1998. Wiskott- Aldrich syndrome protein-deficient mice reveal a role for WASP in T but not B cell activation. Immunity 9: 81-91.   DOI   ScienceOn
47 Westerberg, L., M. Larsson, S. J. Hardy, C. Fernández, A. J. Thrasher, and E. Severinson. 2005. Wiskott-Aldrich syndrome protein deficiency leads to reduced B-cell adhesion, migration, and homing, and a delayed humoral immune response. Blood 105: 1144-1152.
48 Scielzo, C., M. T. Bertilaccio, G. Simonetti, A. Dagklis, E. ten Hacken, C. Fazi, M. Muzio, V. Caiolfa, D. Kitamura, U. Restuccia, A. Bachi, M. Rocchi, M. Ponzoni, P. Ghia, and F. Caligaris-Cappio. 2010. HS1 has a central role in the trafficking and homing of leukemic B cells. Blood 116: 3537-3546.   DOI   ScienceOn
49 Butrym, A., M. Majewski, J. Dzietczenia, K. Kuliczkowski, and G. Mazur. 2012. High expression of hematopoietic cell specific Lyn substrate-1 (HS1) predicts poor survival of B-cell chronic lymphocytic leukemia patients. Leuk. Res. 36:876-880.   DOI   ScienceOn
50 Dehring, D. A., F. Clarke, B. G. Ricart, Y. Huang, T. S. Gomez, E. K. Williamson, D. A. Hammer, D. D. Billadeau, Y. Argon, and J. K. Burkhardt. 2011. Hematopoietic lineage cell-specific protein 1 functions in concert with the Wiskott- Aldrich syndrome protein to promote podosome array organization and chemotaxis in dendritic cells. J. Immunol.186: 4805-4818.   DOI   ScienceOn
51 Imai, K., T. Morio, Y. Zhu, Y. Jin, S. Itoh, M. Kajiwara, J. Yata, S. Mizutani, H. D. Ochs, and S. Nonoyama. 2004. Clinical course of patients with WASP gene mutations. Blood103: 456-464.   DOI   ScienceOn
52 Huang, Y., C. Biswas, D. A. Klos Dehring, U. Sriram, E. K. Williamson, S. Li, F. Clarke, S. Gallucci, Y. Argon, and J. K. Burkhardt. 2011. The actin regulatory protein HS1 is required for antigen uptake and presentation by dendritic cells. J. Immunol. 187: 5952-5963.   DOI   ScienceOn
53 Derry, J. M., H. D. Ochs, and U. Francke. 1994. Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell79: following 922.
54 Sullivan, K. E., C. A. Mullen, R. M. Blaese, and J. A. Winkelstein. 1994. A multiinstitutional survey of the Wiskott- Aldrich syndrome. J. Pediatr. 125: 876-885.   DOI   ScienceOn
55 Thrasher, A. J., and S. O. Burns. 2010. WASP: a key immunological multitasker. Nat. Rev. Immunol. 10: 182-192.   DOI   ScienceOn
56 Linardopoulou, E. V., S. S. Parghi, C. Friedman, G. E. Osborn, S. M. Parkhurst, and B. J. Trask. 2007. Human subtelomeric WASH genes encode a new subclass of the WASP family. PLoS Genet. 3: e237.   DOI
57 Campellone, K. G., N. J. Webb, E. A. Znameroski, and M. D. Welch. 2008. WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi transport. Cell 134: 148-161.   DOI   ScienceOn
58 Blanchoin, L., K. J. Amann, H. N. Higgs, J. B. Marchand, D. A. Kaiser, and T. D. Pollard. 2000. Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins. Nature 404: 1007-1011.   DOI   ScienceOn
59 Miki, H., and T. Takenawa. 2003. Regulation of actin dynamics by WASP family proteins. J. Biochem. 134: 309-313.   DOI   ScienceOn
60 Takenawa, T., and S. Suetsugu. 2007. The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat. Rev. Mol. Cell Biol. 8: 37-48.   DOI   ScienceOn
61 Kim, A. S., L. T. Kakalis, N. Abdul-Manan, G. A. Liu, and M. K. Rosen. 2000. Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature 404:151-158.   DOI   ScienceOn
62 Sakata, D., H. Taniguchi, S. Yasuda, A. Adachi-Morishima, Y. Hamazaki, R. Nakayama, T. Miki, N. Minato, and S. Narumiya. 2007. Impaired T lymphocyte trafficking in mice deficient in an actin-nucleating protein, mDia1. J. Exp. Med.204: 2031-2038.   DOI   ScienceOn
63 Gomez, T. S., K. Kumar, R. B. Medeiros, Y. Shimizu, P. J. Leibson, and D. D. Billadeau. 2007. Formins regulate the actin-related protein 2/3 complex-independent polarization of the centrosome to the immunological synapse. Immunity26: 177-190.   DOI   ScienceOn
64 Lammers, M., R. Rose, A. Scrima, and A. Wittinghofer. 2005. The regulation of mDia1 by autoinhibition and its release by Rho*GTP. EMBO J. 24: 4176-4187.   DOI   ScienceOn
65 Eisenmann, K. M., R. A. West, D. Hildebrand, S. M. Kitchen, J. Peng, R. Sigler, J. Zhang, K. A. Siminovitch, and A. S. Alberts. 2007. T cell responses in mammalian diaphanous- related formin mDia1 knock-out mice. J. Biol. Chem.282: 25152-25158.   DOI   ScienceOn
66 Ruzzene, M., A. M. Brunati, O. Marin, A. Donella-Deana, and L. A. Pinna. 1996. SH2 domains mediate the sequential phosphorylation of HS1 protein by p72syk and Src-related protein tyrosine kinases. Biochemistry 35: 5327-5332.   DOI   ScienceOn
67 Takemoto, Y., M. Sato, M. Furuta, and Y. Hashimoto. 1996. Distinct binding patterns of HS1 to the Src SH2 and SH3 domains reflect possible mechanisms of recruitment and activation of downstream molecules. Int. Immunol. 8: 1699-1705.   DOI   ScienceOn
68 Kitamura, D., H. Kaneko, Y. Miyagoe, T. Ariyasu, and T. Watanabe. 1989. Isolation and characterization of a novel human gene expressed specifically in the cells of hematopoietic lineage. Nucleic Acids Res. 17: 9367-9379.
69 Daly, R. J. 2004. Cortactin signalling and dynamic actin networks. Biochem. J. 382: 13-25.   DOI   ScienceOn
70 Hao, J. J., J. Zhu, K. Zhou, N. Smith, and X. Zhan. 2005. The coiled-coil domain is required for HS1 to bind to F-actin and activate Arp2/3 complex. J. Biol. Chem. 280: 37988-37994.   DOI   ScienceOn
71 Huang, Y., E. O. Comiskey, R. S. Dupree, S. Li, A. J. Koleske, and J. K. Burkhardt. 2008. The c-Abl tyrosine kinase regulates actin remodeling at the immune synapse. Blood 112: 111-119.   DOI   ScienceOn
72 Carrizosa, E., T. S. Gomez, C. M. Labno, D. A. Klos Dehring, X. Liu, B. D. Freedman, D. D. Billadeau, and J. K. Burkhardt. 2009. Hematopoietic lineage cell-specific protein 1 is recruited to the immunological synapse by IL-2-inducible T cell kinase and regulates phospholipase Cgamma1 Microcluster dynamics during T cell spreading. J. Immunol.183: 7352-7361.   DOI   ScienceOn
73 Uruno, T., P. Zhang, J. Liu, J. J. Hao, X. Zhan. 2003. Haematopoietic lineage cell-specific protein 1 (HS1) promotes actin-related protein (Arp) 2/3 complex-mediated actin polymerization. Biochem. J. 371: 485-493.   DOI   ScienceOn
74 Yamanashi, Y., M. Okada, T. Semba, T. Yamori, H. Umemori, S. Tsunasawa, K. Toyoshima, D. Kitamura, T. Watanabe, and T. Yamamoto. 1993. Identification of HS1 protein as a major substrate of protein-tyrosine kinase(s) upon B-cell antigen receptor-mediated signaling. Proc. Natl. Acad. Sci. U. S. A. 90: 3631-3635.   DOI   ScienceOn
75 Yamanashi, Y., T. Fukuda, H. Nishizumi, T. Inazu, K. Higashi, D. Kitamura, T. Ishida, H. Yamamura, T. Watanabe, and T. Yamamoto. 1997. Role of tyrosine phosphorylation of HS1 in B cell antigen receptor-mediated apoptosis. J. Exp. Med. 185: 1387-1392.   DOI   ScienceOn
76 Bunnell, S. C., V. Kapoor, R. P. Trible, W. Zhang, and L. E. Samelson. 2001. Dynamic actin polymerization drives T cell receptor-induced spreading: a role for the signal transduction adaptor LAT. Immunity 14: 315-329.   DOI   ScienceOn
77 Zhang, W., J. Sloan-Lancaster, J. Kitchen, R. P. Trible, and L. E. Samelson. 1998. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92:83-92.   DOI   ScienceOn
78 Liu, S. K., N. Fang, G. A. Koretzky, and C. J. McGlade. 1999. The hematopoietic-specific adaptor protein gads functions in T-cell signaling via interactions with the SLP-76 and LAT adaptors. Curr. Biol. 9: 67-75.   DOI   ScienceOn
79 Bubeck Wardenburg, J., R. Pappu, J. Y. Bu, B. Mayer, J. Chernoff, D. Straus, and A. C. Chan. 1998. Regulation of PAK activation and the T cell cytoskeleton by the linker protein SLP-76. Immunity 9: 607-616.   DOI   ScienceOn
80 Bunnell, S. C., M. Diehn, M. B. Yaffe, P. R. Findell, L. C. Cantley, and L. J. Berg. 2000. Biochemical interactions integrating Itk with the T cell receptor-initiated signaling cascade. J. Biol. Chem. 275: 2219-2230.   DOI   ScienceOn
81 Watanabe, N., P. Madaule, T. Reid, T. Ishizaki, G. Watanabe, A. Kakizuka, Y. Saito, K. Nakao, B. M. Jockusch, and S. Narumiya. 1997. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J. 16: 3044-3056.   DOI   ScienceOn
82 Yablonski, D., T. Kadlecek, and A. Weiss. 2001. Identification of a phospholipase C-gamma1 (PLC-gamma1) SH3 domain-binding site in SLP-76 required for T-cell receptor- mediated activation of PLC-gamma1 and NFAT. Mol. Cell Biol. 21: 4208-4218.   DOI   ScienceOn
83 Wu, J., D. G. Motto, G. A. Koretzky, and A. Weiss. 1996. Vav and SLP-76 interact and functionally cooperate in IL-2 gene activation. Immunity 4: 593-602.   DOI   ScienceOn
84 Tominaga, T., K. Sugie, M. Hirata, N. Morii, J. Fukata, A. Uchida, H, Imura, and S. Narumiya. 1993. Inhibition of PMA-induced, LFA-1-dependent lymphocyte aggregation by ADP ribosylation of the small molecular weight GTP binding protein, rho. J. Cell Biol. 120: 1529-1537.   DOI   ScienceOn
85 Higashida, C., T. Miyoshi, A. Fujita, F. Oceguera-Yanez, J. Monypenny, Y. Andou, S. Narumiya, and N. Watanabe. 2004. Actin polymerization-driven molecular movement of mDia1 in living cells. Science 303: 2007-2010.   DOI   ScienceOn
86 Faix, J., and R. Grosse. 2006. Staying in shape with formins. Dev. Cell 10: 693-706.   DOI   ScienceOn
87 Campellone, K. G., and M. D. Welch. 2010. A nucleator arms race: cellular control of actin assembly. Nat. Rev. Mol. Cell Biol. 11: 237-251.   DOI
88 Monks, C. R., B. A. Freiberg, H. Kupfer, N. Sciaky, and A. Kupfer. 1998. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395: 82-86.   DOI   ScienceOn
89 Cemerski, S., and A. Shaw. 2006. Immune synapses in T-cell activation. Curr. Opin. Immunol. 18: 298-304.   DOI   ScienceOn
90 Saito, T., and T. Yokosuka. 2006. Immunological synapse and microclusters: the site for recognition and activation of T cells. Curr. Opin. Immunol. 18: 305-313.   DOI   ScienceOn
91 Hill, T. L., and M. W. Kirschner. 1982. Bioenergetics and kinetics of microtubule and actin filament assembly-disassembly. Int. Rev. Cytol. 78: 1-125.
92 Irvine. D. J., M. A. Purbhoo, M. Krogsgaard, and M. M. Davis. 2002. Direct observation of ligand recognition by T cells. Nature 419: 845-849.   DOI   ScienceOn
93 Hamon, M., H. Bierne, and P. Cossart. 2006. Listeria monocytogenes: a multifaceted model. Nat. Rev. Microbiol. 4:423-434.   DOI   ScienceOn
94 Veiga, E., and P. Cossart. 2005. Listeria hijacks the clathrin- dependent endocytic machinery to invade mammalian cells. Nat. Cell Biol. 7: 894-900.   DOI   ScienceOn
95 Dustin, M. L. 2007. Cell adhesion molecules and actin cytoskeleton at immune synapses and kinapses. Curr. Opin. Cell Biol. 19: 529-533.   DOI   ScienceOn
96 Huppa, J. B., and M. M. Davis. 2003. T-cell-antigen recognition and the immunological synapse. Nat. Rev. Immunol.3: 973-983.   DOI   ScienceOn
97 Grakoui, A., S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, and M. L. Dustin. 1999. The immunological synapse: a molecular machine controlling T cell activation. Science 285: 221-227.   DOI   ScienceOn
98 Iezzi, G., K. Karjalainen, and A. Lanzavecchia. 1998. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 8: 89-95.   DOI   ScienceOn
99 Mempel, T. R., S. E. Henrickson, and U. H. Von Andrian. 2004. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427: 154-159.   DOI   ScienceOn
100 Delon, J., N. Bercovici, R. Liblau, and A. Trautmann. 1998. Imaging antigen recognition by naive CD4+ T cells: compulsory cytoskeletal alterations for the triggering of an intracellular calcium response. Eur. J. Immunol. 28: 716-729.   DOI   ScienceOn
101 Wulfing, C., M. D. Sjaastad, and M. M. Davis. 1998. Visualizing the dynamics of T cell activation: intracellular adhesion molecule 1 migrates rapidly to the T cell/B cell interface and acts to sustain calcium levels. Proc. Natl. Acad. Sci. U. S. A. 95: 6302-6307.   DOI   ScienceOn
102 Wulfing, C., and M. M. Davis. 1998. A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282: 2266-2269.   DOI   ScienceOn
103 Harwood, N. E., and F. D. Batista. 2011. The cytoskeleton coordinates the early events of B-cell activation. Cold Spring Harb. Perspect. Biol. 3.
104 Valitutti, S., M. Dessing, K. Aktories, H. Gallati, and A. Lanzavecchia. 1995. Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton. J. Exp. Med. 181: 577-584.   DOI   ScienceOn
105 Setterblad, N., S. Becart, D. Charron, and N. Mooney. 2004. B cell lipid rafts regulate both peptide-dependent and peptide- independent APC-T cell interaction. J. Immunol. 173:1876-1886.   DOI
106 Vascotto, F., D. Lankar, G. Faure-Andre, P. Vargas, J. Diaz, D. Le Roux, M. I. Yuseff, J. B. Sibarita, M. Boes, G. Raposo, E. Mougneau, N. Glaichenhaus, C. Bonnerot, B. Manoury, and A. M. Lennon-Dumenil. 2007. The actin-based motor protein myosin II regulates MHC class II trafficking and BCR-driven antigen presentation. J. Cell Biol. 176: 1007-1019.   DOI   ScienceOn
107 Maravillas-Montero, J. L., P. G. Gillespie, G. Patino-Lopez, S. Shaw, and L. Santos-Argumedo. 2011. Myosin 1c participates in B cell cytoskeleton rearrangements, is recruited to the immunologic synapse, and contributes to antigen presentation. J. Immunol. 187: 3053-3063.   DOI   ScienceOn
108 Al-Alwan, M. M., G, Rowden, T. D. Lee, and K. A. West. 2001. The dendritic cell cytoskeleton is critical for the formation of the immunological synapse. J. Immunol. 166:1452-1456.   DOI
109 Metlay, J. P., E. Pure, and R. M. Steinman. 1989. Distinct features of dendritic cells and anti-Ig activated B cells as stimulators of the primary mixed leukocyte reaction. J. Exp. Med. 169: 239-254.   DOI   ScienceOn
110 Cyster, J. G., D. M. Shotton, and A. F. Williams. 1991. The dimensions of the T lymphocyte glycoprotein leukosialin and identification of linear protein epitopes that can be modified by glycosylation. EMBO J. 10: 893-902.
111 van der Merwe, P. A., and A. N. Barclay. 1994. Transient intercellular adhesion: the importance of weak protein-protein interactions. Trends. Biochem. Sci. 19: 354-358.   DOI   ScienceOn
112 Garboczi, D. N., P. Ghosh, U. Utz, Q. R. Fan, W. E. Biddison, and D. C. Wiley. 2010. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 1996. 384: 134-141. J. Immunol. 185: 6394-6401.
113 Husson, J., K. Chemin, A. Bohineust, C. Hivroz, and N. Henry. 2011. Force generation upon T cell receptor engagement. PLoS One 6: e19680.   DOI   ScienceOn
114 Garcia, K. C., M. Degano, R. L. Stanfield, A. Brunmark, M. R. Jackson, P. A. Peterson, L. Teyton, I., and A. Wilson. 1996. An alphabeta T cell receptor structure at 2.5 A and its orientation in the TCR-MHC complex. Science 274: 209-219.   DOI   ScienceOn
115 Springer, T. A., M. L. Dustin, T. K. Kishimoto, and S. D. Marlin. 1987. The lymphocyte function-associated LFA-1, CD2, and LFA-3 molecules: cell adhesion receptors of the immune system. Annu. Rev. Immunol. 5: 223-252.   DOI   ScienceOn
116 Ueda, H., M. K. Morphew, J. R. McIntosh, and M. M. Davis. 2011. CD4+ T-cell synapses involve multiple distinct stages. Proc. Natl. Acad. Sci. U. S. A. 108: 17099-17104.   DOI   ScienceOn
117 Kandula, S, and C. Abraham. 2004. LFA-1 on CD4+ T cells is required for optimal antigen-dependent activation in vivo. J. Immunol. 173: 4443-4451.   DOI
118 Scholer, A., S. Hugues, A. Boissonnas, L. Fetler, and S. Amigorena. 2008. Intercellular adhesion molecule-1-dependent stable interactions between T cells and dendritic cells determine CD8+ T cell memory. Immunity 28: 258-270.   DOI   ScienceOn
119 Hosseini, B. H., I. Louban, D. Djandji, G. H. Wabnitz, J. Deeg, N. Bulbuc, Y. Samstag, M. Gunzer, J. P. Spatz, and G. J. Hämmerling. 2009. Immune synapse formation determines interaction forces between T cells and antigen- presenting cells measured by atomic force microscopy. Proc. Natl. Acad. Sci. U. S. A. 106: 17852-17857.   DOI   ScienceOn
120 Kim, S. T., K. Takeuchi, Z. Y. Sun, M. Touma, C. E. Castro, A. Fahmy, M. J. Lang, G. Wagner, and E. L. Reinherz. 2009. The alphabeta T cell receptor is an anisotropic mechanosensor. J. Biol. Chem. 284: 31028-31037.   DOI   ScienceOn
121 Li, Y. C., B. M. Chen, P. C. Wu, T. L. Cheng, L. S. Kao, M. H. Tao, A. Lieber, and S. R. Roffler. 2010. Cutting Edge: mechanical forces acting on T cells immobilized via the TCR complex can trigger TCR signaling. J. Immunol. 184:5959-5963.   DOI   ScienceOn
122 Judokusumo, E., E. Tabdanov, S. Kumari, M. L. Dustin, and L. C. Kam. 2012. Mechanosensing in T lymphocyte activation. Biophys. J. 102: L5-7.   DOI   ScienceOn
123 La Face, D. M., C. Couture, K. Anderson, G. Shih, J. Alexander, A. Sette, T. Mustelin, A. Altman, and H. M. Grey. 1997. Differential T cell signaling induced by antagonist peptide-MHC complexes and the associated phenotypic responses. J. Immunol. 158: 2057-2064.
124 Sloan-Lancaster, J., A. S. Shaw, J. B. Rothbard, and P. M. Allen. 1994. Partial T cell signaling: altered phospho-zeta and lack of zap70 recruitment in APL-induced T cell anergy.Cell 79: 913-922.   DOI   ScienceOn
125 Madrenas, J., R. L. Wange, J. L. Wang, N. Isakov, L. E. Samelson, and R. N. Germain. 1995. Zeta phosphorylation without ZAP-70 activation induced by TCR antagonists or partial agonists. Science 267: 515-518.   DOI   ScienceOn
126 Dittel, B. N., I. Stefanova, R. N. Germain, and C. A. Jr. Janeway. 1999. Cross-antagonism of a T cell clone expressing two distinct T cell receptors. Immunity 11: 289-298.   DOI   ScienceOn
127 Lucas, B., I. Stefanová, K. Yasutomo, N. Dautigny, and R. N. Germain. 1999. Divergent changes in the sensitivity of maturing T cells to structurally related ligands underlies formation of a useful T cell repertoire. Immunity 10: 367-376.   DOI   ScienceOn
128 Lee, K. H., A. D. Holdorf, M. L. Dustin, A. C. Chan, P. M. Allen, and A. S. Shaw. 2002. T cell receptor signaling precedes immunological synapse formation. Science 295:1539-1542.   DOI   ScienceOn
129 Groves, T., P. Smiley, M. P. Cooke, K. Forbush, R. M. Perlmutter, and C. J. Guidos. 1996. Fyn can partially substitute for Lck in T lymphocyte development. Immunity 5:417-428.   DOI   ScienceOn
130 Palacios, E. H., and A. Weiss. 2004. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene. 23: 7990-8000.   DOI   ScienceOn
131 Finco, T. S., T. Kadlecek, W. Zhang, L. E. Samelson, and A. Weiss. 1998. LAT is required for TCR-mediated activation of PLCgamma1 and the Ras pathway. Immunity 9: 617-626.   DOI   ScienceOn
132 Gomez, T. S., S. D. McCarney, E. Carrizosa, C. M. Labno, E. O. Comiskey, J. C. Nolz, P. Zhu, B. D. Freedman, M. R. Clark, D. J. Rawlings, D. D. Billadeau, and J. K. Burkhardt. 2006. HS1 functions as an essential actin-regulatory adaptor protein at the immune synapse. Immunity 24:741-752.   DOI   ScienceOn