Browse > Article
http://dx.doi.org/10.14348/molcells.2022.2056

Current Understanding of Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) Signaling in T-Cell Biology and Disease Therapy  

Kim, Gil-Ran (Department of Life Science, College of Natural Sciences, Hanyang University)
Choi, Je-Min (Department of Life Science, College of Natural Sciences, Hanyang University)
Abstract
Cytotoxic T lymphocyte antigen-4 (CTLA-4) is an immune checkpoint molecule that is mainly expressed on activated T cells and regulatory T (Treg) cells that inhibits T-cell activation and regulates immune homeostasis. Due to the crucial functions of CTLA-4 in T-cell biology, CTLA-4-targeted immunotherapies have been developed for autoimmune disease as well as cancers. CTLA-4 is known to compete with CD28 to interact with B7, but some studies have revealed that its downstream signaling is independent of its ligand interaction. As a signaling domain of CTLA-4, the tyrosine motif plays a role in inhibiting T-cell activation. Recently, the lysine motif has been shown to be required for the function of Treg cells, emphasizing the importance of CTLA-4 signaling. In this review, we summarize the current understanding of CTLA-4 biology and molecular signaling events and discuss strategies to target CTLA-4 signaling for immune modulation and disease therapy.
Keywords
cytotoxic T lymphocyte antigen-4 (CTLA-4); immunotherapy; signaling motif; T cell; Treg cell;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Choi, J.M., Kim, S.H., Shin, J.H., Gibson, T., Yoon, B.S., Lee, D.H., Lee, S.K., Bothwell, A.L., Lim, J.S., and Lee, S.K. (2008). Transduction of the cytoplasmic domain of CTLA-4 inhibits TcR-specific activation signals and prevents collagen-induced arthritis. Proc. Natl. Acad. Sci. U. S. A. 105, 19875-19880.   DOI
2 Chuang, E., Lee, K.M., Robbins, M.D., Duerr, J.M., Alegre, M.L., Hambor, J.E., Neveu, M.J., Bluestone, J.A., and Thompson, C.B. (1999). Regulation of cytotoxic T lymphocyte-associated molecule-4 by Src kinases. J. Immunol. 162, 1270-1277.   DOI
3 Hodi, F.S., O'Day, S.J., McDermott, D.F., Weber, R.W., Sosman, J.A., Haanen, J.B., Gonzalez, R., Robert, C., Schadendorf, D., Hassel, J.C., et al. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711-723.   DOI
4 Linsley, P.S., Bradshaw, J., Greene, J., Peach, R., Bennett, K.L., and Mittler, R.S. (1996). Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity 4, 535-543.   DOI
5 Linsley, P.S., Brady, W., Urnes, M., Grosmaire, L.S., Damle, N.K., and Ledbetter, J.A. (1991). CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med. 174, 561-569.   DOI
6 Linsley, P.S., Clark, E.A., and Ledbetter, J.A. (1990). T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1. Proc. Natl. Acad. Sci. U. S. A. 87, 5031-5035.   DOI
7 Linsley, P.S., Greene, J.L., Brady, W., Bajorath, J., Ledbetter, J.A., and Peach, R. (1994). Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1, 793-801.   DOI
8 Lo, B., Zhang, K., Lu, W., Zheng, L., Zhang, Q., Kanellopoulou, C., Zhang, Y., Liu, Z., Fritz, J.M., Marsh, R., et al. (2015). AUTOIMMUNE DISEASE. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science 349, 436-440.
9 Marengere, L.E., Waterhouse, P., Duncan, G.S., Mittrucker, H.W., Feng, G.S., and Mak, T.W. (1996). Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science 272, 1170-1173.   DOI
10 Hu, H., Rudd, C.E., and Schneider, H. (2001). Src kinases Fyn and Lck facilitate the accumulation of phosphorylated CTLA-4 and its association with PI-3 kinase in intracellular compartments of T-cells. Biochem. Biophys. Res. Commun. 288, 573-578.   DOI
11 Khattri, R., Auger, J.A., Griffin, M.D., Sharpe, A.H., and Bluestone, J.A. (1999). Lymphoproliferative disorder in CTLA-4 knockout mice is characterized by CD28-regulated activation of Th2 responses. J. Immunol. 162, 5784-5791.   DOI
12 Khoury, S.J., Rochon, J., Ding, L., Byron, M., Ryker, K., Tosta, P., Gao, W., Freedman, M.S., Arnold, D.L., Sayre, P.H., et al. (2017). ACCLAIM: a randomized trial of abatacept (CTLA4-Ig) for relapsing-remitting multiple sclerosis. Mult. Scler. 23, 686-695.   DOI
13 Bradshaw, J.D., Lu, P., Leytze, G., Rodgers, J., Schieven, G.L., Bennett, K.L., Linsley, P.S., and Kurtz, S.E. (1997). Interaction of the cytoplasmic tail of CTLA-4 (CD152) with a clathrin-associated protein is negatively regulated by tyrosine phosphorylation. Biochemistry 36, 15975-15982.   DOI
14 Brunet, J.F., Denizot, F., Luciani, M.F., Roux-Dosseto, M., Suzan, M., Mattei, M.G., and Golstein, P. (1987). A new member of the immunoglobulin superfamily--CTLA-4. Nature 328, 267-270.   DOI
15 Chuang, E., Alegre, M.L., Duckett, C.S., Noel, P.J., Vander Heiden, M.G., and Thompson, C.B. (1997). Interaction of CTLA-4 with the clathrin-associated protein AP50 results in ligand-independent endocytosis that limits cell surface expression. J. Immunol. 159, 144-151.   DOI
16 Chambers, C.A., Sullivan, T.J., and Allison, J.P. (1997). Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ T cells. Immunity 7, 885-895.   DOI
17 Chikuma, S., Murakami, M., Tanaka, K., and Uede, T. (2000). Janus kinase 2 is associated with a box 1-like motif and phosphorylates a critical tyrosine residue in the cytoplasmic region of cytotoxic T lymphocyte associated molecule-4. J. Cell. Biochem. 78, 241-250.
18 Choi, J.M., Ahn, M.H., Chae, W.J., Jung, Y.G., Park, J.C., Song, H.M., Kim, Y.E., Shin, J.A., Park, C.S., Park, J.W., et al. (2006). Intranasal delivery of the cytoplasmic domain of CTLA-4 using a novel protein transduction domain prevents allergic inflammation. Nat. Med. 12, 574-579.   DOI
19 Banton, M.C., Inder, K.L., Valk, E., Rudd, C.E., and Schneider, H. (2014). Rab8 binding to immune cell-specific adaptor LAX facilitates formation of trans-Golgi network-proximal CTLA-4 vesicles for surface expression. Mol. Cell. Biol. 34, 1486-1499.   DOI
20 Lingel, H., Wissing, J., Arra, A., Schanze, D., Lienenklaus, S., Klawonn, F., Pierau, M., Zenker, M., Jansch, L., and Brunner-Weinzierl, M.C. (2017). CTLA-4-mediated posttranslational modifications direct cytotoxic T-lymphocyte differentiation. Cell Death Differ. 24, 1739-1749.   DOI
21 Barnes, M.J., Griseri, T., Johnson, A.M., Young, W., Powrie, F., and Izcue, A. (2013). CTLA-4 promotes Foxp3 induction and regulatory T cell accumulation in the intestinal lamina propria. Mucosal Immunol. 6, 324-334.   DOI
22 Chikuma, S., Abbas, A.K., and Bluestone, J.A. (2005). B7-independent inhibition of T cells by CTLA-4. J. Immunol. 175, 177-181.   DOI
23 Curran, M.A., Montalvo, W., Yagita, H., and Allison, J.P. (2010). PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc. Natl. Acad. Sci. U. S. A. 107, 4275-4280.   DOI
24 Chuang, E., Fisher, T.S., Morgan, R.W., Robbins, M.D., Duerr, J.M., Vander Heiden, M.G., Gardner, J.P., Hambor, J.E., Neveu, M.J., and Thompson, C.B. (2000). The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 13, 313-322.   DOI
25 Contardi, E., Palmisano, G.L., Tazzari, P.L., Martelli, A.M., Fala, F., Fabbi, M., Kato, T., Lucarelli, E., Donati, D., Polito, L., et al. (2005). CTLA-4 is constitutively expressed on tumor cells and can trigger apoptosis upon ligand interaction. Int. J. Cancer 117, 538-550.   DOI
26 Chao, G., Li, X., Ji, Y., Zhu, Y., Li, N., Zhang, N., Feng, Z., and Niu, M. (2018). CTLA-4 regulates T follicular regulatory cell differentiation and participates in intestinal damage caused by spontaneous autoimmunity. Biochem. Biophys. Res. Commun. 505, 865-871.   DOI
27 Fallarino, F., Grohmann, U., Hwang, K.W., Orabona, C., Vacca, C., Bianchi, R., Belladonna, M.L., Fioretti, M.C., Alegre, M.L., and Puccetti, P. (2003). Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol. 4, 1206-1212.   DOI
28 Genovese, M.C., Becker, J.C., Schiff, M., Luggen, M., Sherrer, Y., Kremer, J., Birbara, C., Box, J., Natarajan, K., Nuamah, I., et al. (2005). Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N. Engl. J. Med. 353, 1114-1123.   DOI
29 Qureshi, O.S., Zheng, Y., Nakamura, K., Attridge, K., Manzotti, C., Schmidt, E.M., Baker, J., Jeffery, L.E., Kaur, S., Briggs, Z., et al. (2011). Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332, 600-603.   DOI
30 Qureshi, O.S., Kaur, S., Hou, T.Z., Jeffery, L.E., Poulter, N.S., Briggs, Z., Kenefeck, R., Willox, A.K., Royle, S.J., Rappoport, J.Z., et al. (2012). Constitutive clathrin-mediated endocytosis of CTLA-4 persists during T cell activation. J. Biol. Chem. 287, 9429-9440.   DOI
31 Read, S., Greenwald, R., Izcue, A., Robinson, N., Mandelbrot, D., Francisco, L., Sharpe, A.H., and Powrie, F. (2006). Blockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo. J. Immunol. 177, 4376-4383.   DOI
32 Sage, P.T., Paterson, A.M., Lovitch, S.B., and Sharpe, A.H. (2014). The coinhibitory receptor CTLA-4 controls B cell responses by modulating T follicular helper, T follicular regulatory, and T regulatory cells. Immunity 41, 1026-1039.   DOI
33 Sandborn, W.J., Colombel, J.F., Sands, B.E., Rutgeerts, P., Targan, S.R., Panaccione, R., Bressler, B., Geboes, K., Schreiber, S., Aranda, R., et al. (2012). Abatacept for Crohn's disease and ulcerative colitis. Gastroenterology 143, 62-69.e4.   DOI
34 Kim, H.K., Jeong, M.G., and Hwang, E.S. (2021b). Post-translational modifications in transcription factors that determine T helper cell differentiation. Mol. Cells 44, 318-327.   DOI
35 Klocke, K., Sakaguchi, S., Holmdahl, R., and Wing, K. (2016). Induction of autoimmune disease by deletion of CTLA-4 in mice in adulthood. Proc. Natl. Acad. Sci. U. S. A. 113, E2383-E2392.
36 Kim, G.R., Kim, W.J., Lim, S., Lee, H.G., Koo, J.H., Nam, K.H., Kim, S.M., Park, S.D., and Choi, J.M. (2021a). In vivo induction of regulatory T cells via CTLA-4 signaling peptide to control autoimmune encephalomyelitis and prevent disease relapse. Adv. Sci. (Weinh.) 8, 2004973.
37 Glatigny, S., Hollbacher, B., Motley, S.J., Tan, C., Hundhausen, C., Buckner, J.H., Smilek, D., Khoury, S.J., Ding, L., Qin, T., et al. (2019). Abatacept targets T follicular helper and regulatory T cells, disrupting molecular pathways that regulate their proliferation and maintenance. J. Immunol. 202, 1373-1382.
38 Guntermann, C. and Alexander, D.R. (2002). CTLA-4 suppresses proximal TCR signaling in resting human CD4(+) T cells by inhibiting ZAP-70 Tyr(319) phosphorylation: a potential role for tyrosine phosphatases. J. Immunol. 168, 4420-4429.   DOI
39 Jiang, Y., Li, Y., and Zhu, B. (2015). T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 6, e1792.
40 Kong, K.F., Fu, G., Zhang, Y., Yokosuka, T., Casas, J., Canonigo-Balancio, A.J., Becart, S., Kim, G., Yates, J.R., 3rd, Kronenberg, M., et al. (2014). Protein kinase C-eta controls CTLA-4-mediated regulatory T cell function. Nat. Immunol. 15, 465-472.
41 Kozik, P., Francis, R.W., Seaman, M.N.J., and Robinson, M.S. (2010). A screen for endocytic motifs. Traffic 11, 843-855.   DOI
42 Krummel, M.F. and Allison, J.P. (1995). CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med1. 82, 459-465.   DOI
43 Yi, L.A., Hajialiasgar, S., and Chuang, E. (2004). Tyrosine-mediated inhibitory signals contribute to CTLA-4 function in vivo. Int. Immunol. 16, 539-547.   DOI
44 Walunas, T.L., Lenschow, D.J., Bakker, C.Y., Linsley, P.S., Freeman, G.J., Green, J.M., Thompson, C.B., and Bluestone, J.A. (1994). CTLA-4 can function as a negative regulator of T cell activation. Immunity 1, 405-413.   DOI
45 Wang, C.J., Heuts, F., Ovcinnikovs, V., Wardzinski, L., Bowers, C., Schmidt, E.M., Kogimtzis, A., Kenefeck, R., Sansom, D.M., and Walker, L.S. (2015). CTLA-4 controls follicular helper T-cell differentiation by regulating the strength of CD28 engagement. Proc. Natl. Acad. Sci. U. S. A.1 12, 524-529.
46 Wei, S.C., Sharma, R., Anang, N.A.S., Levine, J.H., Zhao, Y., Mancuso, J.J., Setty, M., Sharma, P., Wang, J., Pe'er, D., et al. (2019). Negative co-stimulation constrains T cell differentiation by imposing boundaries on possible cell states. Immunity 50, 1084-1098.e10.   DOI
47 Mead, K.I., Zheng, Y., Manzotti, C.N., Perry, L.C., Liu, M.K., Burke, F., Powner, D.J., Wakelam, M.J., and Sansom, D.M. (2005). Exocytosis of CTLA-4 is dependent on phospholipase D and ADP ribosylation factor-1 and stimulated during activation of regulatory T cells. J. Immunol. 174, 4803-4811.   DOI
48 Zheng, S.G., Wang, J.H., Stohl, W., Kim, K.S., Gray, J.D., and Horwitz, D.A. (2006). TGF-beta requires CTLA-4 early after T cell activation to induce FoxP3 and generate adaptive CD4+CD25+ regulatory cells. J. Immunol. 176, 3321-3329.   DOI
49 Schneider, H., Smith, X., Liu, H., Bismuth, G., and Rudd, C.E. (2008). CTLA-4 disrupts ZAP70 microcluster formation with reduced T cell/APC dwell times and calcium mobilization. Eur. J. Immunol. 38, 40-47.   DOI
50 Schneider, H., Martin, M., Agarraberes, F.A., Yin, L., Rapoport, I., Kirchhausen, T., and Rudd, C.E. (1999). Cytolytic T lymphocyte-associated antigen-4 and the TCR zeta/CD3 complex, but not CD28, interact with clathrin adaptor complexes AP-1 and AP-2. J. Immunol. 163, 1868-1879.   DOI
51 Mease, P.J., Gottlieb, A.B., van der Heijde, D., FitzGerald, O., Johnsen, A., Nys, M., Banerjee, S., and Gladman, D.D. (2017). Efficacy and safety of abatacept, a T-cell modulator, in a randomised, double-blind, placebo-controlled, phase III study in psoriatic arthritis. Ann. Rheum. Dis. 76, 1550-1558.   DOI
52 Miyatake, S., Nakaseko, C., Umemori, H., Yamamoto, T., and Saito, T. (1998). Src family tyrosine kinases associate with and phosphorylate CTLA-4 (CD152). Biochem. Biophys. Res. Commun. 249, 444-448.   DOI
53 Olsson, C., Riesbeck, K., Dohlsten, M., and Michaelsson, E. (1999). CTLA-4 ligation suppresses CD28-induced NF-kappaB and AP-1 activity in mouse T cell blasts. J. Biol. Chem. 274, 14400-14405.   DOI
54 Parulekar, A.D., Boomer, J.S., Patterson, B.M., Yin-Declue, H., Deppong, C.M., Wilson, B.S., Jarjour, N.N., Castro, M., and Green, J.M. (2013). A randomized controlled trial to evaluate inhibition of T-cell costimulation in allergen-induced airway inflammation. Am. J. Respir. Crit. Care Med. 187, 494-501.   DOI
55 Paterson, A.M., Lovitch, S.B., Sage, P.T., Juneja, V.R., Lee, Y., Trombley, J.D., Arancibia-Carcamo, C.V., Sobel, R.A., Rudensky, A.Y., Kuchroo, V.K., et al. (2015). Deletion of CTLA-4 on regulatory T cells during adulthood leads to resistance to autoimmunity. J. Exp. Med. 212, 1603-1621.   DOI
56 Srahna, M., Van Grunsven, L.A., Remacle, J.E., and Vandenberghe, P. (2006). CTLA-4 interacts with STAT5 and inhibits STAT5-mediated transcription. Immunology 117, 396-401.   DOI
57 Schubert, D., Bode, C., Kenefeck, R., Hou, T.Z., Wing, J.B., Kennedy, A., Bulashevska, A., Petersen, B.S., Schaffer, A.A., Gruning, B.A., et al. (2014). Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat. Med. 20, 1410-1416.   DOI
58 Seidel, J.A., Otsuka, A., and Kabashima, K. (2018). Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front. Oncol. 8, 86.
59 Shiratori, T., Miyatake, S., Ohno, H., Nakaseko, C., Isono, K., Bonifacino, J.S., and Saito, T. (1997). Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity 6, 583-589.   DOI
60 Stumpf, M., Zhou, X., and Bluestone, J.A. (2013). The B7-independent isoform of CTLA-4 functions to regulate autoimmune diabetes. J. Immunol. 190, 961-969.   DOI
61 Stumpf, M., Zhou, X., Chikuma, S., and Bluestone, J.A. (2014). Tyrosine 201 of the cytoplasmic tail of CTLA-4 critically affects T regulatory cell suppressive function. Eur. J. Immunol. 44, 1737-1746.   DOI
62 Serwas, N.K., Hoeger, B., Ardy, R.C., Stulz, S.V., Sui, Z., Memaran, N., Meeths, M., Krolo, A., Yuce Petronczki, O., Pfajfer, L., et al. (2019). Human DEF6 deficiency underlies an immunodeficiency syndrome with systemic autoimmunity and aberrant CTLA-4 homeostasis. Nat. Commun. 10, 3106.
63 Ling, V., Wu, P.W., Finnerty, H.F., Sharpe, A.H., Gray, G.S., and Collins, M. (1999). Complete sequence determination of the mouse and human CTLA4 gene loci: cross-species DNA sequence similarity beyond exon borders. Genomics 60, 341-355.   DOI
64 Pedros, C., Canonigo-Balancio, A.J., Kong, K.F., and Altman, A. (2017). Requirement of Treg-intrinsic CTLA4/PKCeta signaling pathway for suppressing tumor immunity. JCI Insight 2, e95692.
65 Szentpetery, A., Heffernan, E., Gogarty, M., Mellerick, L., McCormack, J., Haroon, M., Elmamoun, M., Gallagher, P., Kelly, G., Fabre, A., et al. (2017). Abatacept reduces synovial regulatory T-cell expression in patients with psoriatic arthritis. Arthritis Res. Ther. 19, 158.
66 Larsen, C.P., Pearson, T.C., Adams, A.B., Tso, P., Shirasugi, N., Strobert, E., Anderson, D., Cowan, S., Price, K., Naemura, J., et al. (2005). Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am. J. Transplant. 5, 443-453.   DOI
67 Latek, R., Fleener, C., Lamian, V., Kulbokas, E., 3rd, Davis, P.M., Suchard, S.J., Curran, M., Vincenti, F., and Townsend, R. (2009). Assessment of belatacept-mediated costimulation blockade through evaluation of CD80/86-receptor saturation. Transplantation 87, 926-933.   DOI
68 Lim, S., Ho Sohn, J., Koo, J.H., Park, J.W., and Choi, J.M. (2017). dNP2-ctCTLA-4 inhibits German cockroach extract-induced allergic airway inflammation and hyper-responsiveness via inhibition of Th2 responses. Exp. Mol. Med. 49, e362.
69 Lim, S., Kim, W.J., Kim, Y.H., Lee, S., Koo, J.H., Lee, J.A., Yoon, H., Kim, D.H., Park, H.J., Kim, H.M., et al. (2015). dNP2 is a blood-brain barrier-permeable peptide enabling ctCTLA-4 protein delivery to ameliorate experimental autoimmune encephalomyelitis. Nat. Commun. 6, 8244.
70 Lim, S., Kirkiles-Smith, N.C., Pober, J.S., Bothwell, A.L.M., and Choi, J.M. (2018). Regulation of human T cell responses by dNP2-ctCTLA-4 inhibits human skin and microvessel graft rejection. Biomaterials 183, 128-138.   DOI
71 Ueda, H., Howson, J.M., Esposito, L., Heward, J., Snook, H., Chamberlain, G., Rainbow, D.B., Hunter, K.M., Smith, A.N., Di Genova, G., et al. (2003). Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423, 506-511.   DOI
72 Read, S., Malmstrom, V., and Powrie, F. (2000). Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+) CD4(+) regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295-302.   DOI
73 Schneider, H., Downey, J., Smith, A., Zinselmeyer, B.H., Rush, C., Brewer, J.M., Wei, B., Hogg, N., Garside, P., and Rudd, C.E. (2006). Reversal of the TCR stop signal by CTLA-4. Science 313, 1972-1975.   DOI
74 Schneider, H. and Rudd, C.E. (2014). Diverse mechanisms regulate the surface expression of immunotherapeutic target ctla-4. Front. Immunol. 5, 619.
75 Takahashi, T., Tagami, T., Yamazaki, S., Uede, T., Shimizu, J., Sakaguchi, N., Mak, T.W., and Sakaguchi, S. (2000). Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303-310.   DOI
76 Teft, W.A., Chau, T.A., and Madrenas, J. (2009). Structure-Function analysis of the CTLA-4 interaction with PP2A. BMC Immunol. 10, 23.
77 Valk, E., Rudd, C.E., and Schneider, H. (2008). CTLA-4 trafficking and surface expression. Trends Immunol. 29, 272-279.   DOI
78 Verhagen, J., Gabrysova, L., Shepard, E.R., and Wraith, D.C. (2014). Ctla-4 modulates the differentiation of inducible Foxp3+ Treg cells but IL-10 mediates their function in experimental autoimmune encephalomyelitis. PLoS One 9, e108023.
79 Vijayakrishnan, L., Slavik, J.M., Illes, Z., Greenwald, R.J., Rainbow, D., Greve, B., Peterson, L.B., Hafler, D.A., Freeman, G.J., Sharpe, A.H., et al. (2004). An autoimmune disease-associated CTLA-4 splice variant lacking the B7 binding domain signals negatively in T cells. Immunity 20, 563-575.   DOI
80 Schneider, H., Prasad, K.V., Shoelson, S.E., and Rudd, C.E. (1995). CTLA-4 binding to the lipid kinase phosphatidylinositol 3-kinase in T cells. J. Exp. Med. 181, 351-355.   DOI
81 Yang, Y., Li, X., Ma, Z., Wang, C., Yang, Q., Byrne-Steele, M., Hong, R., Min, Q., Zhou, G., Cheng, Y., et al. (2021). CTLA-4 expression by B-1a B cells is essential for immune tolerance. Nat. Commun. 12, 525.
82 Waterhouse, P., Penninger, J.M., Timms, E., Wakeham, A., Shahinian, A., Lee, K.P., Thompson, C.B., Griesser, H., and Mak, T.W. (1995). Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270, 985-988.   DOI
83 Watkins, B., Qayed, M., McCracken, C., Bratrude, B., Betz, K., Suessmuth, Y., Yu, A., Sinclair, S., Furlan, S., Bosinger, S., et al. (2021). Phase II trial of costimulation blockade with abatacept for prevention of acute GVHD. J. Clin. Oncol. 39, 1865-1877.   DOI
84 Wing, K., Onishi, Y., Prieto-Martin, P., Yamaguchi, T., Miyara, M., Fehervari, Z., Nomura, T., and Sakaguchi, S. (2008). CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271-275.   DOI
85 Zhang, H., Dutta, P., Liu, J., Sabri, N., Song, Y., Li, W.X., and Li, J. (2019). Tumour cell-intrinsic CTLA4 regulates PD-L1 expression in non-small cell lung cancer. J. Cell. Mol. Med. 23, 535-542.   DOI
86 Zhang, Y. and Allison, J.P. (1997). Interaction of CTLA-4 with AP50, a clathrin-coated pit adaptor protein. Proc. Natl. Acad. Sci. U. S. A. 94, 9273-9278.   DOI