Acknowledgement
This research was supported by grants from the Bio and Medical Technology Development Program (NRF-2017M3A9C8027972) and Basic Science Research Program (NRF-2019R1A2C3006155) of the National Research Foundation funded by the Korean government to J.-M.C.
References
- Banton, M.C., Inder, K.L., Valk, E., Rudd, C.E., and Schneider, H. (2014). Rab8 binding to immune cell-specific adaptor LAX facilitates formation of trans-Golgi network-proximal CTLA-4 vesicles for surface expression. Mol. Cell. Biol. 34, 1486-1499. https://doi.org/10.1128/MCB.01331-13
- Barnes, M.J., Griseri, T., Johnson, A.M., Young, W., Powrie, F., and Izcue, A. (2013). CTLA-4 promotes Foxp3 induction and regulatory T cell accumulation in the intestinal lamina propria. Mucosal Immunol. 6, 324-334. https://doi.org/10.1038/mi.2012.75
- Bradshaw, J.D., Lu, P., Leytze, G., Rodgers, J., Schieven, G.L., Bennett, K.L., Linsley, P.S., and Kurtz, S.E. (1997). Interaction of the cytoplasmic tail of CTLA-4 (CD152) with a clathrin-associated protein is negatively regulated by tyrosine phosphorylation. Biochemistry 36, 15975-15982. https://doi.org/10.1021/bi971762i
- Brunet, J.F., Denizot, F., Luciani, M.F., Roux-Dosseto, M., Suzan, M., Mattei, M.G., and Golstein, P. (1987). A new member of the immunoglobulin superfamily--CTLA-4. Nature 328, 267-270. https://doi.org/10.1038/328267a0
- Chambers, C.A., Sullivan, T.J., and Allison, J.P. (1997). Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ T cells. Immunity 7, 885-895. https://doi.org/10.1016/S1074-7613(00)80406-9
- Chao, G., Li, X., Ji, Y., Zhu, Y., Li, N., Zhang, N., Feng, Z., and Niu, M. (2018). CTLA-4 regulates T follicular regulatory cell differentiation and participates in intestinal damage caused by spontaneous autoimmunity. Biochem. Biophys. Res. Commun. 505, 865-871. https://doi.org/10.1016/j.bbrc.2018.09.182
- Chikuma, S., Abbas, A.K., and Bluestone, J.A. (2005). B7-independent inhibition of T cells by CTLA-4. J. Immunol. 175, 177-181. https://doi.org/10.4049/jimmunol.175.1.177
- Chikuma, S., Murakami, M., Tanaka, K., and Uede, T. (2000). Janus kinase 2 is associated with a box 1-like motif and phosphorylates a critical tyrosine residue in the cytoplasmic region of cytotoxic T lymphocyte associated molecule-4. J. Cell. Biochem. 78, 241-250.
- Choi, J.M., Ahn, M.H., Chae, W.J., Jung, Y.G., Park, J.C., Song, H.M., Kim, Y.E., Shin, J.A., Park, C.S., Park, J.W., et al. (2006). Intranasal delivery of the cytoplasmic domain of CTLA-4 using a novel protein transduction domain prevents allergic inflammation. Nat. Med. 12, 574-579. https://doi.org/10.1038/nm1385
- Choi, J.M., Kim, S.H., Shin, J.H., Gibson, T., Yoon, B.S., Lee, D.H., Lee, S.K., Bothwell, A.L., Lim, J.S., and Lee, S.K. (2008). Transduction of the cytoplasmic domain of CTLA-4 inhibits TcR-specific activation signals and prevents collagen-induced arthritis. Proc. Natl. Acad. Sci. U. S. A. 105, 19875-19880. https://doi.org/10.1073/pnas.0805198105
- Chuang, E., Alegre, M.L., Duckett, C.S., Noel, P.J., Vander Heiden, M.G., and Thompson, C.B. (1997). Interaction of CTLA-4 with the clathrin-associated protein AP50 results in ligand-independent endocytosis that limits cell surface expression. J. Immunol. 159, 144-151. https://doi.org/10.4049/jimmunol.159.1.144
- Chuang, E., Fisher, T.S., Morgan, R.W., Robbins, M.D., Duerr, J.M., Vander Heiden, M.G., Gardner, J.P., Hambor, J.E., Neveu, M.J., and Thompson, C.B. (2000). The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 13, 313-322. https://doi.org/10.1016/S1074-7613(00)00031-5
- Chuang, E., Lee, K.M., Robbins, M.D., Duerr, J.M., Alegre, M.L., Hambor, J.E., Neveu, M.J., Bluestone, J.A., and Thompson, C.B. (1999). Regulation of cytotoxic T lymphocyte-associated molecule-4 by Src kinases. J. Immunol. 162, 1270-1277. https://doi.org/10.4049/jimmunol.162.3.1270
- Contardi, E., Palmisano, G.L., Tazzari, P.L., Martelli, A.M., Fala, F., Fabbi, M., Kato, T., Lucarelli, E., Donati, D., Polito, L., et al. (2005). CTLA-4 is constitutively expressed on tumor cells and can trigger apoptosis upon ligand interaction. Int. J. Cancer 117, 538-550. https://doi.org/10.1002/ijc.21155
- Curran, M.A., Montalvo, W., Yagita, H., and Allison, J.P. (2010). PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc. Natl. Acad. Sci. U. S. A. 107, 4275-4280. https://doi.org/10.1073/pnas.0915174107
- Fallarino, F., Grohmann, U., Hwang, K.W., Orabona, C., Vacca, C., Bianchi, R., Belladonna, M.L., Fioretti, M.C., Alegre, M.L., and Puccetti, P. (2003). Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol. 4, 1206-1212. https://doi.org/10.1038/ni1003
- Genovese, M.C., Becker, J.C., Schiff, M., Luggen, M., Sherrer, Y., Kremer, J., Birbara, C., Box, J., Natarajan, K., Nuamah, I., et al. (2005). Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N. Engl. J. Med. 353, 1114-1123. https://doi.org/10.1056/NEJMoa050524
- Glatigny, S., Hollbacher, B., Motley, S.J., Tan, C., Hundhausen, C., Buckner, J.H., Smilek, D., Khoury, S.J., Ding, L., Qin, T., et al. (2019). Abatacept targets T follicular helper and regulatory T cells, disrupting molecular pathways that regulate their proliferation and maintenance. J. Immunol. 202, 1373-1382.
- Guntermann, C. and Alexander, D.R. (2002). CTLA-4 suppresses proximal TCR signaling in resting human CD4(+) T cells by inhibiting ZAP-70 Tyr(319) phosphorylation: a potential role for tyrosine phosphatases. J. Immunol. 168, 4420-4429. https://doi.org/10.4049/jimmunol.168.9.4420
- Hodi, F.S., O'Day, S.J., McDermott, D.F., Weber, R.W., Sosman, J.A., Haanen, J.B., Gonzalez, R., Robert, C., Schadendorf, D., Hassel, J.C., et al. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711-723. https://doi.org/10.1056/NEJMoa1003466
- Hu, H., Rudd, C.E., and Schneider, H. (2001). Src kinases Fyn and Lck facilitate the accumulation of phosphorylated CTLA-4 and its association with PI-3 kinase in intracellular compartments of T-cells. Biochem. Biophys. Res. Commun. 288, 573-578. https://doi.org/10.1006/bbrc.2001.5814
- Jiang, Y., Li, Y., and Zhu, B. (2015). T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 6, e1792.
- Khattri, R., Auger, J.A., Griffin, M.D., Sharpe, A.H., and Bluestone, J.A. (1999). Lymphoproliferative disorder in CTLA-4 knockout mice is characterized by CD28-regulated activation of Th2 responses. J. Immunol. 162, 5784-5791. https://doi.org/10.4049/jimmunol.162.10.5784
- Khoury, S.J., Rochon, J., Ding, L., Byron, M., Ryker, K., Tosta, P., Gao, W., Freedman, M.S., Arnold, D.L., Sayre, P.H., et al. (2017). ACCLAIM: a randomized trial of abatacept (CTLA4-Ig) for relapsing-remitting multiple sclerosis. Mult. Scler. 23, 686-695. https://doi.org/10.1177/1352458516662727
- Kim, G.R., Kim, W.J., Lim, S., Lee, H.G., Koo, J.H., Nam, K.H., Kim, S.M., Park, S.D., and Choi, J.M. (2021a). In vivo induction of regulatory T cells via CTLA-4 signaling peptide to control autoimmune encephalomyelitis and prevent disease relapse. Adv. Sci. (Weinh.) 8, 2004973.
- Kim, H.K., Jeong, M.G., and Hwang, E.S. (2021b). Post-translational modifications in transcription factors that determine T helper cell differentiation. Mol. Cells 44, 318-327. https://doi.org/10.14348/molcells.2021.0057
- Klocke, K., Sakaguchi, S., Holmdahl, R., and Wing, K. (2016). Induction of autoimmune disease by deletion of CTLA-4 in mice in adulthood. Proc. Natl. Acad. Sci. U. S. A. 113, E2383-E2392.
- Kong, K.F., Fu, G., Zhang, Y., Yokosuka, T., Casas, J., Canonigo-Balancio, A.J., Becart, S., Kim, G., Yates, J.R., 3rd, Kronenberg, M., et al. (2014). Protein kinase C-eta controls CTLA-4-mediated regulatory T cell function. Nat. Immunol. 15, 465-472.
- Kozik, P., Francis, R.W., Seaman, M.N.J., and Robinson, M.S. (2010). A screen for endocytic motifs. Traffic 11, 843-855. https://doi.org/10.1111/j.1600-0854.2010.01056.x
- Krummel, M.F. and Allison, J.P. (1995). CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med1. 82, 459-465. https://doi.org/10.1084/jem.182.2.459
- Larsen, C.P., Pearson, T.C., Adams, A.B., Tso, P., Shirasugi, N., Strobert, E., Anderson, D., Cowan, S., Price, K., Naemura, J., et al. (2005). Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am. J. Transplant. 5, 443-453. https://doi.org/10.1111/j.1600-6143.2005.00749.x
- Latek, R., Fleener, C., Lamian, V., Kulbokas, E., 3rd, Davis, P.M., Suchard, S.J., Curran, M., Vincenti, F., and Townsend, R. (2009). Assessment of belatacept-mediated costimulation blockade through evaluation of CD80/86-receptor saturation. Transplantation 87, 926-933. https://doi.org/10.1097/TP.0b013e31819b5a58
- Lim, S., Ho Sohn, J., Koo, J.H., Park, J.W., and Choi, J.M. (2017). dNP2-ctCTLA-4 inhibits German cockroach extract-induced allergic airway inflammation and hyper-responsiveness via inhibition of Th2 responses. Exp. Mol. Med. 49, e362.
- Lim, S., Kim, W.J., Kim, Y.H., Lee, S., Koo, J.H., Lee, J.A., Yoon, H., Kim, D.H., Park, H.J., Kim, H.M., et al. (2015). dNP2 is a blood-brain barrier-permeable peptide enabling ctCTLA-4 protein delivery to ameliorate experimental autoimmune encephalomyelitis. Nat. Commun. 6, 8244.
- Lim, S., Kirkiles-Smith, N.C., Pober, J.S., Bothwell, A.L.M., and Choi, J.M. (2018). Regulation of human T cell responses by dNP2-ctCTLA-4 inhibits human skin and microvessel graft rejection. Biomaterials 183, 128-138. https://doi.org/10.1016/j.biomaterials.2018.08.049
- Ling, V., Wu, P.W., Finnerty, H.F., Sharpe, A.H., Gray, G.S., and Collins, M. (1999). Complete sequence determination of the mouse and human CTLA4 gene loci: cross-species DNA sequence similarity beyond exon borders. Genomics 60, 341-355. https://doi.org/10.1006/geno.1999.5930
- Lingel, H., Wissing, J., Arra, A., Schanze, D., Lienenklaus, S., Klawonn, F., Pierau, M., Zenker, M., Jansch, L., and Brunner-Weinzierl, M.C. (2017). CTLA-4-mediated posttranslational modifications direct cytotoxic T-lymphocyte differentiation. Cell Death Differ. 24, 1739-1749. https://doi.org/10.1038/cdd.2017.102
- Linsley, P.S., Bradshaw, J., Greene, J., Peach, R., Bennett, K.L., and Mittler, R.S. (1996). Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity 4, 535-543. https://doi.org/10.1016/S1074-7613(00)80480-X
- Linsley, P.S., Brady, W., Urnes, M., Grosmaire, L.S., Damle, N.K., and Ledbetter, J.A. (1991). CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med. 174, 561-569. https://doi.org/10.1084/jem.174.3.561
- Linsley, P.S., Clark, E.A., and Ledbetter, J.A. (1990). T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1. Proc. Natl. Acad. Sci. U. S. A. 87, 5031-5035. https://doi.org/10.1073/pnas.87.13.5031
- Linsley, P.S., Greene, J.L., Brady, W., Bajorath, J., Ledbetter, J.A., and Peach, R. (1994). Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1, 793-801. https://doi.org/10.1016/S1074-7613(94)80021-9
- Lo, B., Zhang, K., Lu, W., Zheng, L., Zhang, Q., Kanellopoulou, C., Zhang, Y., Liu, Z., Fritz, J.M., Marsh, R., et al. (2015). AUTOIMMUNE DISEASE. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science 349, 436-440.
- Marengere, L.E., Waterhouse, P., Duncan, G.S., Mittrucker, H.W., Feng, G.S., and Mak, T.W. (1996). Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science 272, 1170-1173. https://doi.org/10.1126/science.272.5265.1170
- Mead, K.I., Zheng, Y., Manzotti, C.N., Perry, L.C., Liu, M.K., Burke, F., Powner, D.J., Wakelam, M.J., and Sansom, D.M. (2005). Exocytosis of CTLA-4 is dependent on phospholipase D and ADP ribosylation factor-1 and stimulated during activation of regulatory T cells. J. Immunol. 174, 4803-4811. https://doi.org/10.4049/jimmunol.174.8.4803
- Mease, P.J., Gottlieb, A.B., van der Heijde, D., FitzGerald, O., Johnsen, A., Nys, M., Banerjee, S., and Gladman, D.D. (2017). Efficacy and safety of abatacept, a T-cell modulator, in a randomised, double-blind, placebo-controlled, phase III study in psoriatic arthritis. Ann. Rheum. Dis. 76, 1550-1558. https://doi.org/10.1136/annrheumdis-2016-210724
- Miyatake, S., Nakaseko, C., Umemori, H., Yamamoto, T., and Saito, T. (1998). Src family tyrosine kinases associate with and phosphorylate CTLA-4 (CD152). Biochem. Biophys. Res. Commun. 249, 444-448. https://doi.org/10.1006/bbrc.1998.9191
- Olsson, C., Riesbeck, K., Dohlsten, M., and Michaelsson, E. (1999). CTLA-4 ligation suppresses CD28-induced NF-kappaB and AP-1 activity in mouse T cell blasts. J. Biol. Chem. 274, 14400-14405. https://doi.org/10.1074/jbc.274.20.14400
- Parulekar, A.D., Boomer, J.S., Patterson, B.M., Yin-Declue, H., Deppong, C.M., Wilson, B.S., Jarjour, N.N., Castro, M., and Green, J.M. (2013). A randomized controlled trial to evaluate inhibition of T-cell costimulation in allergen-induced airway inflammation. Am. J. Respir. Crit. Care Med. 187, 494-501. https://doi.org/10.1164/rccm.201207-1205OC
- Paterson, A.M., Lovitch, S.B., Sage, P.T., Juneja, V.R., Lee, Y., Trombley, J.D., Arancibia-Carcamo, C.V., Sobel, R.A., Rudensky, A.Y., Kuchroo, V.K., et al. (2015). Deletion of CTLA-4 on regulatory T cells during adulthood leads to resistance to autoimmunity. J. Exp. Med. 212, 1603-1621. https://doi.org/10.1084/jem.20141030
- Pedros, C., Canonigo-Balancio, A.J., Kong, K.F., and Altman, A. (2017). Requirement of Treg-intrinsic CTLA4/PKCeta signaling pathway for suppressing tumor immunity. JCI Insight 2, e95692.
- Qureshi, O.S., Kaur, S., Hou, T.Z., Jeffery, L.E., Poulter, N.S., Briggs, Z., Kenefeck, R., Willox, A.K., Royle, S.J., Rappoport, J.Z., et al. (2012). Constitutive clathrin-mediated endocytosis of CTLA-4 persists during T cell activation. J. Biol. Chem. 287, 9429-9440. https://doi.org/10.1074/jbc.M111.304329
- Qureshi, O.S., Zheng, Y., Nakamura, K., Attridge, K., Manzotti, C., Schmidt, E.M., Baker, J., Jeffery, L.E., Kaur, S., Briggs, Z., et al. (2011). Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332, 600-603. https://doi.org/10.1126/science.1202947
- Read, S., Greenwald, R., Izcue, A., Robinson, N., Mandelbrot, D., Francisco, L., Sharpe, A.H., and Powrie, F. (2006). Blockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo. J. Immunol. 177, 4376-4383. https://doi.org/10.4049/jimmunol.177.7.4376
- Read, S., Malmstrom, V., and Powrie, F. (2000). Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+) CD4(+) regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295-302. https://doi.org/10.1084/jem.192.2.295
- Sage, P.T., Paterson, A.M., Lovitch, S.B., and Sharpe, A.H. (2014). The coinhibitory receptor CTLA-4 controls B cell responses by modulating T follicular helper, T follicular regulatory, and T regulatory cells. Immunity 41, 1026-1039. https://doi.org/10.1016/j.immuni.2014.12.005
- Sandborn, W.J., Colombel, J.F., Sands, B.E., Rutgeerts, P., Targan, S.R., Panaccione, R., Bressler, B., Geboes, K., Schreiber, S., Aranda, R., et al. (2012). Abatacept for Crohn's disease and ulcerative colitis. Gastroenterology 143, 62-69.e4. https://doi.org/10.1053/j.gastro.2012.04.010
- Schneider, H., Downey, J., Smith, A., Zinselmeyer, B.H., Rush, C., Brewer, J.M., Wei, B., Hogg, N., Garside, P., and Rudd, C.E. (2006). Reversal of the TCR stop signal by CTLA-4. Science 313, 1972-1975. https://doi.org/10.1126/science.1131078
- Schneider, H., Martin, M., Agarraberes, F.A., Yin, L., Rapoport, I., Kirchhausen, T., and Rudd, C.E. (1999). Cytolytic T lymphocyte-associated antigen-4 and the TCR zeta/CD3 complex, but not CD28, interact with clathrin adaptor complexes AP-1 and AP-2. J. Immunol. 163, 1868-1879. https://doi.org/10.4049/jimmunol.163.4.1868
- Schneider, H., Prasad, K.V., Shoelson, S.E., and Rudd, C.E. (1995). CTLA-4 binding to the lipid kinase phosphatidylinositol 3-kinase in T cells. J. Exp. Med. 181, 351-355. https://doi.org/10.1084/jem.181.1.351
- Schneider, H. and Rudd, C.E. (2014). Diverse mechanisms regulate the surface expression of immunotherapeutic target ctla-4. Front. Immunol. 5, 619.
- Schneider, H., Smith, X., Liu, H., Bismuth, G., and Rudd, C.E. (2008). CTLA-4 disrupts ZAP70 microcluster formation with reduced T cell/APC dwell times and calcium mobilization. Eur. J. Immunol. 38, 40-47. https://doi.org/10.1002/eji.200737423
- Schubert, D., Bode, C., Kenefeck, R., Hou, T.Z., Wing, J.B., Kennedy, A., Bulashevska, A., Petersen, B.S., Schaffer, A.A., Gruning, B.A., et al. (2014). Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat. Med. 20, 1410-1416. https://doi.org/10.1038/nm.3746
- Seidel, J.A., Otsuka, A., and Kabashima, K. (2018). Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front. Oncol. 8, 86.
- Serwas, N.K., Hoeger, B., Ardy, R.C., Stulz, S.V., Sui, Z., Memaran, N., Meeths, M., Krolo, A., Yuce Petronczki, O., Pfajfer, L., et al. (2019). Human DEF6 deficiency underlies an immunodeficiency syndrome with systemic autoimmunity and aberrant CTLA-4 homeostasis. Nat. Commun. 10, 3106.
- Shiratori, T., Miyatake, S., Ohno, H., Nakaseko, C., Isono, K., Bonifacino, J.S., and Saito, T. (1997). Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity 6, 583-589. https://doi.org/10.1016/S1074-7613(00)80346-5
- Srahna, M., Van Grunsven, L.A., Remacle, J.E., and Vandenberghe, P. (2006). CTLA-4 interacts with STAT5 and inhibits STAT5-mediated transcription. Immunology 117, 396-401. https://doi.org/10.1111/j.1365-2567.2005.02313.x
- Stumpf, M., Zhou, X., and Bluestone, J.A. (2013). The B7-independent isoform of CTLA-4 functions to regulate autoimmune diabetes. J. Immunol. 190, 961-969. https://doi.org/10.4049/jimmunol.1201362
- Stumpf, M., Zhou, X., Chikuma, S., and Bluestone, J.A. (2014). Tyrosine 201 of the cytoplasmic tail of CTLA-4 critically affects T regulatory cell suppressive function. Eur. J. Immunol. 44, 1737-1746. https://doi.org/10.1002/eji.201343891
- Szentpetery, A., Heffernan, E., Gogarty, M., Mellerick, L., McCormack, J., Haroon, M., Elmamoun, M., Gallagher, P., Kelly, G., Fabre, A., et al. (2017). Abatacept reduces synovial regulatory T-cell expression in patients with psoriatic arthritis. Arthritis Res. Ther. 19, 158.
- Takahashi, T., Tagami, T., Yamazaki, S., Uede, T., Shimizu, J., Sakaguchi, N., Mak, T.W., and Sakaguchi, S. (2000). Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303-310. https://doi.org/10.1084/jem.192.2.303
- Teft, W.A., Chau, T.A., and Madrenas, J. (2009). Structure-Function analysis of the CTLA-4 interaction with PP2A. BMC Immunol. 10, 23.
- Ueda, H., Howson, J.M., Esposito, L., Heward, J., Snook, H., Chamberlain, G., Rainbow, D.B., Hunter, K.M., Smith, A.N., Di Genova, G., et al. (2003). Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423, 506-511. https://doi.org/10.1038/nature01621
- Valk, E., Rudd, C.E., and Schneider, H. (2008). CTLA-4 trafficking and surface expression. Trends Immunol. 29, 272-279. https://doi.org/10.1016/j.it.2008.02.011
- Verhagen, J., Gabrysova, L., Shepard, E.R., and Wraith, D.C. (2014). Ctla-4 modulates the differentiation of inducible Foxp3+ Treg cells but IL-10 mediates their function in experimental autoimmune encephalomyelitis. PLoS One 9, e108023.
- Vijayakrishnan, L., Slavik, J.M., Illes, Z., Greenwald, R.J., Rainbow, D., Greve, B., Peterson, L.B., Hafler, D.A., Freeman, G.J., Sharpe, A.H., et al. (2004). An autoimmune disease-associated CTLA-4 splice variant lacking the B7 binding domain signals negatively in T cells. Immunity 20, 563-575. https://doi.org/10.1016/S1074-7613(04)00110-4
- Walunas, T.L., Lenschow, D.J., Bakker, C.Y., Linsley, P.S., Freeman, G.J., Green, J.M., Thompson, C.B., and Bluestone, J.A. (1994). CTLA-4 can function as a negative regulator of T cell activation. Immunity 1, 405-413. https://doi.org/10.1016/1074-7613(94)90071-X
- Wang, C.J., Heuts, F., Ovcinnikovs, V., Wardzinski, L., Bowers, C., Schmidt, E.M., Kogimtzis, A., Kenefeck, R., Sansom, D.M., and Walker, L.S. (2015). CTLA-4 controls follicular helper T-cell differentiation by regulating the strength of CD28 engagement. Proc. Natl. Acad. Sci. U. S. A.1 12, 524-529.
- Waterhouse, P., Penninger, J.M., Timms, E., Wakeham, A., Shahinian, A., Lee, K.P., Thompson, C.B., Griesser, H., and Mak, T.W. (1995). Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270, 985-988. https://doi.org/10.1126/science.270.5238.985
- Watkins, B., Qayed, M., McCracken, C., Bratrude, B., Betz, K., Suessmuth, Y., Yu, A., Sinclair, S., Furlan, S., Bosinger, S., et al. (2021). Phase II trial of costimulation blockade with abatacept for prevention of acute GVHD. J. Clin. Oncol. 39, 1865-1877. https://doi.org/10.1200/JCO.20.01086
- Wei, S.C., Sharma, R., Anang, N.A.S., Levine, J.H., Zhao, Y., Mancuso, J.J., Setty, M., Sharma, P., Wang, J., Pe'er, D., et al. (2019). Negative co-stimulation constrains T cell differentiation by imposing boundaries on possible cell states. Immunity 50, 1084-1098.e10. https://doi.org/10.1016/j.immuni.2019.03.004
- Wing, K., Onishi, Y., Prieto-Martin, P., Yamaguchi, T., Miyara, M., Fehervari, Z., Nomura, T., and Sakaguchi, S. (2008). CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271-275. https://doi.org/10.1126/science.1160062
- Yang, Y., Li, X., Ma, Z., Wang, C., Yang, Q., Byrne-Steele, M., Hong, R., Min, Q., Zhou, G., Cheng, Y., et al. (2021). CTLA-4 expression by B-1a B cells is essential for immune tolerance. Nat. Commun. 12, 525.
- Yi, L.A., Hajialiasgar, S., and Chuang, E. (2004). Tyrosine-mediated inhibitory signals contribute to CTLA-4 function in vivo. Int. Immunol. 16, 539-547. https://doi.org/10.1093/intimm/dxh055
- Zhang, H., Dutta, P., Liu, J., Sabri, N., Song, Y., Li, W.X., and Li, J. (2019). Tumour cell-intrinsic CTLA4 regulates PD-L1 expression in non-small cell lung cancer. J. Cell. Mol. Med. 23, 535-542. https://doi.org/10.1111/jcmm.13956
- Zhang, Y. and Allison, J.P. (1997). Interaction of CTLA-4 with AP50, a clathrin-coated pit adaptor protein. Proc. Natl. Acad. Sci. U. S. A. 94, 9273-9278. https://doi.org/10.1073/pnas.94.17.9273
- Zheng, S.G., Wang, J.H., Stohl, W., Kim, K.S., Gray, J.D., and Horwitz, D.A. (2006). TGF-beta requires CTLA-4 early after T cell activation to induce FoxP3 and generate adaptive CD4+CD25+ regulatory cells. J. Immunol. 176, 3321-3329. https://doi.org/10.4049/jimmunol.176.6.3321