DOI QR코드

DOI QR Code

Differential antiangiogenic and anticancer activities of the active metabolites of ginsenoside Rg3

  • Maryam Nakhjavani (Molecular Oncology, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital) ;
  • Eric Smith (Molecular Oncology, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital) ;
  • Kenny Yeo (Molecular Oncology, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital) ;
  • Yoko Tomita (Molecular Oncology, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital) ;
  • Timothy J. Price (Adelaide Medical School, University of Adelaide) ;
  • Andrea Yool (Adelaide Medical School, University of Adelaide) ;
  • Amanda R. Townsend (Adelaide Medical School, University of Adelaide) ;
  • Jennifer E. Hardingham (Molecular Oncology, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital)
  • Received : 2021.02.24
  • Accepted : 2021.05.24
  • Published : 2024.03.01

Abstract

Background: Epimers of ginsenoside Rg3 (Rg3) have a low bioavailability and are prone to deglycosylation, which produces epimers of ginsenoside Rh2 (S-Rh2 and R-Rh2) and protopanaxadiol (S-PPD and R-PPD). The aim of this study was to compare the efficacy and potency of these molecules as anti-cancer agents. Methods: Crystal violet staining was used to study the anti-proliferatory action of the molecules on a human epithelial breast cancer cell line, MDA-MB-231, and human umbilical vein endothelial cells (HUVEC) and compare their potency. Cell death and cell cycle were studied using flow cytometry and mode of cell death was studied using live cell imaging. Anti-angiogenic effects of the drug were studied using loop formation assay. Molecular docking showed the interaction of these molecules with vascular endothelial growth factor receptor-2 (VEGFR2) and aquaporin (AQP) water channels. VEGF bioassay was used to study the interaction of Rh2 with VEGFR2, in vitro. Results: HUVEC was the more sensitive cell line to the anti-proliferative effects of S-Rh2, S-PPD and R-PPD. The molecules induced necroptosis/necrosis in MDA-MB-231 and apoptosis in HUVEC. S-Rh2 was the most potent inhibitor of loop formation. In silico molecular docking predicted a good binding score between Rh2 or PPD and the ATP-binding pocket of VEGFR2. VEGF bioassay showed that Rh2 was an allosteric modulator of VEGFR2. In addition, SRh2 and PPD had good binding scores with AQP1 and AQP5, both of which play roles in cell migration and proliferation. Conclusion: The combination of these molecules might be responsible for the anti-cancer effects observed by Rg3.

Keywords

Acknowledgement

This research was funded by the Margaret Elcombe Research Fellowship, The Hospital Research Foundation.

References

  1. Nakhjavani M, Hardingham JE, Palethorpe HM, Tomita Y, Smith E, Price TJ, et al. Ginsenoside Rg3: potential molecular targets and therapeutic indication in metastatic breast cancer. Medicines 2019;6(1):17. 
  2. Nakhjavani M, Smith E, Townsend AR, Price TJ, Hardingham JE. Anti-angiogenic properties of ginsenoside Rg3. Molecules 2020;25(21):4905. 
  3. Pan L, Zhang T, Sun H, Liu G. Ginsenoside Rg3 (shenyi capsule) combined with chemotherapy for digestive system cancer in China: a meta-analysis and systematic review. Evid Based Complement Alternat Med 2019;2019:2417418. 
  4. Lu P, Su W, Miao ZH, Niu HR, Liu J, Hua QL. Effect and mechanism of ginsenoside Rg3 on postoperative life span of patients with non-small cell lung cancer. Chin J Integr Med 2008;14(1):33-6.  https://doi.org/10.1007/s11655-007-9002-6
  5. Zhou B, Yan Z, Liu R, Shi P, Qian S, Qu X, et al. Prospective study of transcatheter arterial chemoembolization (TACE) with ginsenoside Rg3 versus TACE alone for the treatment of patients with advanced hepatocellular carcinoma. Radiology 2016;280(2):630-9.  https://doi.org/10.1148/radiol.2016150719
  6. Li Y, Wang Y, Niu K, Chen X, Xia L, Lu D, et al. Clinical benefit from EGFR-TKI plus ginsenoside Rg3 in patients with advanced non-small cell lung cancer harboring EGFR active mutation. Oncotarget 2016;7(43):70535-45.  https://doi.org/10.18632/oncotarget.12059
  7. Xie HT, Wang GJ, Sun JG, Tucker I, Zhao XC, Xie YY, et al. High performance liquid chromatographic-mass spectrometric determination of ginsenoside Rg3 and its metabolites in rat plasma using solid-phase extraction for pharmacokinetic studies. J Chromatogr B Analyt Technol Biomed Life Sci 2005;818(2):67-73.  https://doi.org/10.1016/j.jchromb.2004.09.059
  8. Peng M, Li X, Zhang T, Ding Y, Yi Y, Le J, et al. Stereoselective pharmacokinetic and metabolism studies of 20(S)- and 20(R)-ginsenoside Rg3 epimers in rat plasma by liquid chromatography-electrospray ionization mass spectrometry. J Pharm Biomed Anal 2016;121:215-24.  https://doi.org/10.1016/j.jpba.2016.01.020
  9. Nakhjavani M, Palethorpe HM, Tomita Y, Smith E, Price TJ, Yool AJ, et al. Stereoselective anti-cancer activities of ginsenoside Rg3 on triple negative breast cancer cell models. Pharmaceuticals 2019;12(3):117. 
  10. Nakhjavani M, Smith E, Yeo K, Palethorpe HM, Tomita Y, Price TJ, et al. Antiangiogenic properties of ginsenoside Rg3 epimers: in vitro assessment of single and combination treatments. Cancers 2021;13(9):2223. 
  11. De Ieso ML, Yool AJ. Mechanisms of aquaporin-facilitated cancer invasion and metastasis. Front Chem 2018;6:135. 
  12. Smith E, Palethorpe HM, Tomita Y, Pei JV, Townsend AR, Price TJ, et al. The purified extract from the medicinal plant bacopa monnieri, bacopaside II, inhibits growth of colon cancer cells in vitro by inducing cell cycle arrest and apoptosis. Cells 2018;7(7):81. 
  13. Paltoglou S, Das R, Townley SL, Hickey TE, Tarulli GA, Coutinho I, et al. Novel androgen receptor coregulator GRHL2 exerts both oncogenic and antimetastatic functions in prostate cancer. Cancer Res 2017;77(13):3417-30.  https://doi.org/10.1158/0008-5472.CAN-16-1616
  14. Tomita Y, Palethorpe HM, Smith E, Nakhjavani M, Townsend AR, Price TJ, et al. Bumetanide-derived aquaporin 1 inhibitors, AqB013 and AqB050 inhibit tube formation of endothelial cells through induction of apoptosis and impaired migration in vitro. Int J Mol Sci 2019;20(8):1818. 
  15. Palethorpe HM, Smith E, Tomita Y, Nakhjavani M, Yool AJ, Price TJ, et al. Bacopasides I and II act in synergy to inhibit the growth, migration and invasion of breast cancer cell lines. Molecules 2019;24(19):3539. 
  16. Mosnier LO, Griffin JH. Inhibition of staurosporine-induced apoptosis of endothelial cells by activated protein C requires protease-activated receptor-1 and endothelial cell protein C receptor. Biochem 2003;373(1):65-70.  https://doi.org/10.1042/bj20030341
  17. Zinonos I, Labrinidis A, Liapis V, Hay S, Panagopoulos V, Denichilo M, et al. Doxorubicin overcomes resistance to drozitumab by antagonizing Inhibitor of Apoptosis Proteins (IAPs). Anticancer Res 2014;34(12):7007-20. 
  18. PubChem. PubChem compound summary for CID 119307. Ginsenoside Rh2. NCBI [Internet]. 2020 Nov [cited 2020 Nov 11]. 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Ginsenoside-Rh2. 
  19. PubChem. PubChem compound summary for CID 11213350 (20S)-Protopanaxadiol. NCBI [Internet]. 2020 Nov [cited 2020 Nov 11]. 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/20S_-Protopanaxadiol. 
  20. Pei JV, Kourghi M, De Ieso ML, Campbell EM, Dorward HS, Hardingham JE, et al. Differential inhibition of water and ion channel activities of mammalian aquaporin-1 by two structurally related bacopaside compounds derived from the medicinal plant bacopa monnieri. Mol Pharmacol 2016;90(4):496-507.  https://doi.org/10.1124/mol.116.105882
  21. Zhu S, Liu X, Xue M, Li Y, Cai D, Wang S, et al. 20(S)-ginsenoside Rh2 induces caspase-dependent promyelocytic leukemia-retinoic acid receptor A degradation in NB4 cells via Akt/Bax/caspase9 and TNF-α/caspase8 signaling cascades. J Ginseng Res 2020;45(2):295-304.  https://doi.org/10.1016/j.jgr.2020.05.001
  22. Xia T, Zhang J, Zhou C, Li Y, Duan W, Zhang B, et al. 20(S)-Ginsenoside Rh2 displays efficacy against T-cell acute lymphoblastic leukemia through the PI3K/Akt/mTOR signal pathway. J Ginseng Res 2020;44(5):725-37.  https://doi.org/10.1016/j.jgr.2019.07.003
  23. Yang J, Yuan D, Xing T, Su H, Zhang S, Wen J, et al. Ginsenoside Rh2 inhibiting HCT116 colon cancer cell proliferation through blocking PDZ-binding kinase/T-LAK cell-originated protein kinase. J Ginseng Res 2016;40(4):400-8.  https://doi.org/10.1016/j.jgr.2016.03.007
  24. Liu J, Shimizu K, Yu H, Zhang C, Jin F, Kondo R. Stereospecificity of hydroxyl group at C-20 in antiproliferative action of ginsenoside Rh2 on prostate cancer cells. Fitoterapia 2010;81(7):902-5.  https://doi.org/10.1016/j.fitote.2010.05.020
  25. Usami Y, Liu Y-N, Lin A-S, Shibano M, Akiyama T, Itokawa H, et al. Antitumor agents. 261. 20 (S)-protopanaxadiol and 20 (S)-protopanaxatriol as antiangiogenic agents and total assignment of 1H NMR spectra. J Nat Prod 2008;71(3):478-81.  https://doi.org/10.1021/np070613q
  26. Choi S, Kim TW, Singh SV. Ginsenoside Rh2-mediated G1 phase cell cycle arrest in human breast cancer cells is caused by p15 Ink4B and p27 Kip1-dependent inhibition of cyclin-dependent kinases. Pharm Res 2009;26(10):2280-8.  https://doi.org/10.1007/s11095-009-9944-9
  27. Snyder AG, Hubbard NW, Messmer MN, Kofman SB, Hagan CE, Orozco SL, et al. Intratumoral activation of the necroptotic pathway components RIPK1 and RIPK3 potentiates antitumor immunity. Sci Immunol 2019;4(36). 
  28. Shlomovitz I, Speir M, Gerlic M. Flipping the dogma-phosphatidylserine in non-apoptotic cell death. Cell Commun Signal 2019;17(1):1-12.  https://doi.org/10.1186/s12964-018-0315-1
  29. Pietkiewicz S, Schmidt JH, Lavrik IN. Quantification of apoptosis and necroptosis at the single cell level by a combination of Imaging Flow Cytometry with classical Annexin V/propidium iodide staining. J Immunol Methods 2015;423:99-103.  https://doi.org/10.1016/j.jim.2015.04.025
  30. Su Z, Yang Z, Xu Y, Chen Y, Yu Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer 2015;14(1):48. 
  31. Gong Y, Fan Z, Luo G, Yang C, Huang Q, Fan K, et al. The role of necroptosis in cancer biology and therapy. Mol Cancer 2019;18(1):1-17.  https://doi.org/10.1186/s12943-019-1029-8
  32. Han W, Li L, Qiu S, Lu Q, Pan Q, Gu Y, et al. Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol Cancer Ther 2007;6(5):1641-9.  https://doi.org/10.1158/1535-7163.MCT-06-0511
  33. Xuan Y, Hu X. Naturally-occurring shikonin analogues-a class of necroptotic inducers that circumvent cancer drug resistance. Cancer Lett 2009;274(2):233-42.  https://doi.org/10.1016/j.canlet.2008.09.029
  34. Fu Z, Deng B, Liao Y, Shan L, Yin F, Wang Z, et al. The anti-tumor effect of shikonin on osteosarcoma by inducing RIP1 and RIP3 dependent necroptosis. BMC Cancer 2013;13(1):1-10.  https://doi.org/10.1186/1471-2407-13-1
  35. Wang X, Xia HY, Qin HY, Kang XP, Hu HY, Zheng J, et al. 20 (S)-protopanaxadiol induces apoptosis in human umbilical vein endothelial cells by activating the PERK-eIF2alpha-ATF4 signaling pathway. J Cell Biochem 2019;120(4):5085-96.  https://doi.org/10.1002/jcb.27785
  36. Zhang XP, Li KR, Yu Q, Yao MD, Ge HM, Li XM, et al. Ginsenoside Rh2 inhibits vascular endothelial growth factor-induced corneal neovascularization. FASEB J 2018;32(7):3782-91.  https://doi.org/10.1096/fj.201701074RR
  37. Tomita Y, Dorward H, Yool AJ, Smith E, Townsend AR, Price TJ, et al. Role of aquaporin 1 signalling in cancer development and progression. Int J Mol Sci 2017;18(2):299. 
  38. Brozzo MS, Bjeliꠑc S, Kisko K, Schleier T, Leppanen V-M, Alitalo K, et al. Thermodynamic and structural description of allosterically regulated VEGFR-2 dimerization. Blood 2012;119(7):1781-8.  https://doi.org/10.1182/blood-2011-11-390922
  39. Christensen J. A preclinical review of sunitinib, a multitargeted receptor tyrosine kinase inhibitor with anti-angiogenic and antitumour activities. Ann Oncol 2007;18:x3-10.  https://doi.org/10.1093/annonc/mdm408
  40. De Smet F, Christopoulos A, Carmeliet P. Allosteric targeting of receptor tyrosine kinases. Nat Biotechnol 2014;32(11):1113-20.  https://doi.org/10.1038/nbt.3028
  41. Yool AJ, Brown EA, Flynn GA. Roles for novel pharmacological blockers of aquaporins in the treatment of brain oedema and cancer. Clin Exp Pharmacol Physiol 2010;37(4):403-9. https://doi.org/10.1111/j.1440-1681.2009.05244.x