• 제목/요약/키워드: cell protection

검색결과 944건 처리시간 0.032초

Phloroglucinol Attenuates Ultraviolet B-Induced 8-Oxoguanine Formation in Human HaCaT Keratinocytes through Akt and Erk-Mediated Nrf2/Ogg1 Signaling Pathways

  • Piao, Mei Jing;Kim, Ki Cheon;Kang, Kyoung Ah;Fernando, Pincha Devage Sameera Madushan;Herath, Herath Mudiyanselage Udari Lakmini;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • 제29권1호
    • /
    • pp.90-97
    • /
    • 2021
  • Ultraviolet B (UVB) radiation causes DNA base modifications. One of these changes leads to the generation of 8-oxoguanine (8-oxoG) due to oxidative stress. In human skin, this modification may induce sunburn, inflammation, and aging and may ultimately result in cancer. We investigated whether phloroglucinol (1,3,5-trihydroxybenzene), by enhancing the expression and activity of 8-oxoG DNA glycosylase 1 (Ogg1), had an effect on the capacity of UVB-exposed human HaCaT keratinocytes to repair oxidative DNA damage. Here, the effects of phloroglucinol were investigated using a luciferase activity assay, reverse transcription-polymerase chain reactions, western blot analysis, and a chromatin immunoprecipitation assay. Phloroglucinol restored Ogg1 activity and decreased the formation of 8-oxoG in UVB-exposed cells. Moreover, phloroglucinol increased Ogg1 transcription and protein expression, counteracting the UVB-induced reduction in Ogg1 levels. Phloroglucinol also enhanced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) as well as Nrf2 binding to an antioxidant response element located in the Ogg1 gene promoter. UVB exposure inhibited the phosphorylation of protein kinase B (PKB or Akt) and extracellular signal-regulated kinase (Erk), two major enzymes involved in cell protection against oxidative stress, regulating the activity of Nrf2. Akt and Erk phosphorylation was restored by phloroglucinol in the UVB-exposed keratinocytes. These results indicated that phloroglucinol attenuated UVB-induced 8-oxoG formation in keratinocytes via an Akt/Erk-dependent, Nrf2/Ogg1-mediated signaling pathway.

제브라피쉬 interferon regulatory factor 10의 주사에 따른 면역 유전자 발현과 VHSV에 대한 방어 효과 (Immune gene expression and protection effect against VHSV by injection of interferon regulatory factor 10 in zebrafish (Danio rerio))

  • 김혜지;김진영;박종빈;이지현;박정수;김형준;권세련
    • 한국어병학회지
    • /
    • 제34권1호
    • /
    • pp.23-29
    • /
    • 2021
  • Interferon regulatory factors (IRFs) are a family of transcription factors essential to the control of antiviral immune response, cell growth, differentiation and apoptosis. IRF10 of zebrafish (Danio rerio) was negative regulation of the interferonΦ1 and 3 response in vitro. In this study, we analyze the induction of in vivo immune response activation from the IRF10 gene of zebrafish and the protective effect against VHSV. As the results, the group inoculated with IRF10 expression vectors, there was no expression of IFNΦ1, suggestion that IRF10 may function as a negative regulator of IRF3, which binds to the IFNΦ1 promoter. And other types of interferon genes (IFNΦ2-4) are thought to have been activated, inducing to the expression of pro-inflammatory cytokine and Mx genes. As the results of challenge test performed at 14 days after inoculation of the expression vectors, the maximum survival rate [50% (1㎍ DNA) and 42.5% (10㎍ DNA)] for IRF10 group were recorded. Meanwhile, the survival rates of pcDNA3.1 and PBS as the control groups were 10% and 15%, respectively. This study suggests that the possibility that activation of IRF10 molecule could be exploited as a VHS control method.

Antioxidant, Cytotoxicity and Cytoprotective Potential of Extracts of Grewia Flava and Grewia Bicolor Berries

  • Masisi, Kabo;Masamba, Riach;Lashani, Keletso;Li, Chunyang;Kwape, Tebogo E.;Gaobotse, Goabaone
    • 대한약침학회지
    • /
    • 제24권1호
    • /
    • pp.24-31
    • /
    • 2021
  • Objectives: Accumulation of cellular reactive oxygen species (ROS) leads to oxidative stress. Increased production of ROS, such as superoxide anion, or a deficiency in their clearance by antioxidant defences, mediates cellular pathology. Grewia Spp fruits are a source of bioactive compounds and have notable antioxidant activity. Although the antioxidant capacity of Grewia Spp has been studied, there is very limited evidence that links the antioxidant activities of Grewia bicolor and Grewia flava to the inhibition of free radical formation associated with damage in biological systems. Methods: This study evaluated the protective effects of Grewia bicolor and Grewia flava extracts against free radical-induced oxidative stress and the resulting cytotoxicity effect using HeLa cells. Antioxidant properties determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and total phenolic content (TPC) assays showed significantly higher (p < 0.05) antioxidant activity in Grewia flava (ethanol extract) than Grewia flava (water extract) and Grewia bicolor (ethanol and water extracts). Results: Using 3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide or MTT assay, cytotoxicity results showed that extracts of Grewia bicolor and Grewia flava were less toxic to HeLa cells at tested concentrations compared to the untreated control. This confirmed the low toxicity of these edible fruits at the tested concentrations in HeLa cells. Furthermore, hydrogen peroxide (H2O2)-induced cell loss was effectively reduced by pre-incubating HeLa cells with Grewia bicolor and Grewia flava extracts, with Grewia flava (ethanol extract) revealing better protection. Conclusion: The effect was speculated to be associated with the higher antioxidant activity of Grewia flava (ethanol extract). Additional studies will warrant confirmation of the mechanism of action of such effects.

Prevalence of Accident Occurrence Among Scientific Laboratory Workers of the Public University in Lebanon and the Impact of Safety Measures

  • Nasrallah, Inaam M.;El Kak, Assem K.;Ismaiil, Lina A.;Nasr, Rihab R.;Bawab, Wafa T.
    • Safety and Health at Work
    • /
    • 제13권2호
    • /
    • pp.155-162
    • /
    • 2022
  • Background: Workers are exposed to several risks in academic laboratories due to the presence of potentially hazardous substances. The main objective of this study was to assess the prevalence of accident occurrence and associated risk factors among laboratory workers at the scientific laboratories of the public university in Lebanon and the impact of safety measures training and availability. Methods: In this observational study, a survey was conducted for one year in scientific laboratories at faculties of the public university. Results: Among the participants (N = 220), 45.0% have had accidents; the main cause was exposure to chemicals (73.7%) and more specifically by inhalation (45.4%). Females (85.9%) were more exposed to accidents than males. Laboratory workers with a master's degree, a full-time schedule, and more than ten years of experience were significantly more exposed to accidents (p < 0.05). A significant association was found between accident occurrence and training on management of hazardous products (p = 0.044), risks related to workplace (p = 0.030), eyewash and emergency shower (p < 0.001), first aid (p = 0.012), and facial protection availability (p = 0.019). In spite of the lack of safety culture and efficient training on laboratory safety, participants have shown a very good perception regarding safety measures to be applied in case of work accidents. Conclusion: Based on our findings, the prevalence of accident occurrence is elevated among lab workers at the public university. The impact of regular training on laboratory safety preventive measures is of great importance to ensure the efficiency of occupational health and safety in scientific laboratories.

역류성 식도염에 대한 천연 미네랄 워터의 효과 (Effects of Natural Mineral Water on Reflux Esophagitis)

  • 추병길
    • 한국유기농업학회지
    • /
    • 제30권1호
    • /
    • pp.75-87
    • /
    • 2022
  • 본 연구는 다량 미네랄 6종 및 미량 미네랄 8종이 함유된 천연 미네랄 워터의 기능성을 확인하기 위해 역류성 식도염 유발 동물모델을 이용하여 개선 효과를 분석하였다. RAW264.7에서의 세포 생존율 측정 결과를 통해 미네랄 워터는 세포에 대한 독성이 없음을 확인하였으며, 역류성 식도염 동물모델에서 위 내용물 역류에 의한 식도 손상을 감소시켰으며, 식도 점막 보호 작용으로 인해 세포 연접 단백질 발현을 억제하였다. 따라서, 미네랄 워터의 식도 보호 작용은 조직 내 염증성 단백질 및 점막 재생 관련 단백질을 조절함으로써 나타난 것으로 사료된다. 이러한 연구 결과를 통해, 미네랄 워터의 기능성을 확인함으로써 음용수, 식품 생산 등의 다양한 산업 분야에서의 활용성과 가축 생산에 있어 면역증진 및 염증 관련 질병에 대처할 수 있는 친환경 기능성 사료첨가제로서의 미네랄 워터의 이용 가치를 확인할 수 있었다.

Pyruvate Dehydrogenase Kinase Protects Dopaminergic Neurons from Oxidative Stress in Drosophila DJ-1 Null Mutants

  • Lee, Yoonjeong;Kim, Jaehyeon;Kim, Hyunjin;Han, Ji Eun;Kim, Sohee;Kang, Kyong-hwa;Kim, Donghoon;Kim, Jong-Min;Koh, Hyongjong
    • Molecules and Cells
    • /
    • 제45권7호
    • /
    • pp.454-464
    • /
    • 2022
  • DJ-1 is one of the causative genes of early-onset familial Parkinson's disease (PD). As a result, DJ-1 influences the pathogenesis of sporadic PD. DJ-1 has various physiological functions that converge to control the levels of intracellular reactive oxygen species (ROS). Based on genetic analyses that sought to investigate novel antioxidant DJ-1 downstream genes, pyruvate dehydrogenase (PDH) kinase (PDK) was demonstrated to increase survival rates and decrease dopaminergic (DA) neuron loss in DJ-1 mutant flies under oxidative stress. PDK phosphorylates and inhibits the PDH complex (PDC), subsequently downregulating glucose metabolism in the mitochondria, which is a major source of intracellular ROS. A loss-of-function mutation in PDK was not found to have a significant effect on fly development and reproduction, but severely ameliorated oxidative stress resistance. Thus, PDK plays a critical role in the protection against oxidative stress. Loss of PDH phosphatase (PDP), which dephosphorylates and activates PDH, was also shown to protect DJ-1 mutants from oxidative stress, ultimately supporting our findings. Further genetic analyses suggested that DJ-1 controls PDK expression through hypoxia-inducible factor 1 (HIF-1), a transcriptional regulator of the adaptive response to hypoxia and oxidative stress. Furthermore, CPI-613, an inhibitor of PDH, protected DJ-1 null flies from oxidative stress, suggesting that the genetic and pharmacological inhibition of PDH may be a novel treatment strategy for PD associated with DJ-1 dysfunction.

Analysis of the transcripts encoding for antigenic proteins of bovine gammaherpesvirus 4

  • Romeo, Florencia;Spetter, Maximiliano J.;Moran, Pedro;Pereyra, Susana;Odeon, Anselmo;Perez, Sandra E.;Verna, Andrea E.
    • Journal of Veterinary Science
    • /
    • 제21권1호
    • /
    • pp.5.1-5.12
    • /
    • 2020
  • The major glycoproteins of bovine gammaherpesvirus 4 (BoHV-4) are gB, gH, gM, gL, and gp180 with gB, gH, and gp180 being the most glycosylated. These glycoproteins participate in cell binding while some act as neutralization targets. Glycosylation of these envelope proteins may be involved in virion protection against neutralization by antibodies. In infected cattle, BoHV-4 induces an immune response characterized by low neutralizing antibody levels or an absence of such antibodies. Therefore, virus seroneutralization in vitro cannot always be easily demonstrated. The aim of this study was to evaluate the neutralizing capacity of 2 Argentine BoHV-4 strains and to associate those findings with the gene expression profiles of the major envelope glycoproteins. Expression of genes coding for the envelope glycoproteins occurred earlier in cells infected with isolate 10/154 than in cells infected with strain 07/435, demonstrating a distinct difference between the strains. Differences in serological response can be attributed to differences in the expression of antigenic proteins or to post-translational modifications that mask neutralizing epitopes. Strain 07/435 induced significantly high titers of neutralizing antibodies in several animal species in addition to bovines. The most relevant serological differences were observed in adult animals. This is the first comprehensive analysis of the expression kinetics of genes coding for BoHV-4 glycoproteins in 2 Argentine strains (genotypes 1 and 2). The results further elucidate the BoHV-4 life cycle and may also help determine the genetic variability of the strains circulating in Argentina.

The effects of Korean Red Ginseng-derived components on oligodendrocyte lineage cells: Distinct facilitatory roles of the non-saponin and saponin fractions, and Rb1, in proliferation, differentiation and myelination

  • Lee, Ahreum;Kwon, Oh Wook;Jung, Kwi Ryun;Song, Gyun Jee;Yang, Hyun-Jeong
    • Journal of Ginseng Research
    • /
    • 제46권1호
    • /
    • pp.104-114
    • /
    • 2022
  • Background: Abnormalities of myelin, which increases the efficiency of action potential conduction, are found in neurological disorders. Korean Red Ginseng (KRG) demonstrates therapeutic efficacy against some of these conditions, however effects on oligodendrocyte (OL)s are not well known. Here, we examined the effects of KRG-derived components on development and protection of OL-lineage cells. Methods: Primary OL precursor cell (OPC) cultures were prepared from neonatal mouse cortex. The protective efficacies of the KRG components were examined against inhibitors of mitochondrial respiratory chain activity. For in vivo function of Rb1 on myelination, after 10 days of oral gavage into adult male mice, forebrains were collected. OPC proliferation were assessed by BrdU incorporation, and differentiation and myelination were examined by qPCR, western blot and immunocytochemistry. Results: The non-saponin promoted OPC proliferation, while the saponin promoted differentiation. Both processes were mediated by AKT and extracellular regulated kinase (ERK) signaling. KRG extract, the saponin and non-saponin protected OPCs against oxidative stress, and both KRG extract and the saponin significantly increased the expression of the antioxidant enzyme. Among 11 major ginsenosides tested, Rb1 significantly increased OL membrane size in vitro. Moreover, Rb1 significantly increased myelin formation in adult mouse brain. Conclusion: All KRG components prevented OPC deaths under oxidative stress. While non-saponin promoted proliferation, saponin fraction increased differentiation and OL membrane size. Furthermore, among all the tested ginsenosides, Rb1 showed the biggest increase in the membrane size and significantly enhanced myelination in vivo. These results imply therapeutic potentials of KRG and Rb1 for myelin-related disorders.

감초추출물(Glycyrrhiza glabra Extract)의 피부에서의 DNA 손상 방지효과 (Protective Effect of Glycyrrhiza glabra Extract on UV-induced Skin DNA Damage)

  • 신재영;강내규
    • 대한화장품학회지
    • /
    • 제48권1호
    • /
    • pp.33-38
    • /
    • 2022
  • 자외선인 ultraviolet B (UVB)는 피부각질세포의 DNA 잔기에 손상을 준다. 특히, DNA의 pyrimidine 잔기 손상인 cyclobutane pyrimidine dimers (CPD)의 형성은 피부 광노화의 대표적인 지표로 여겨진다. 본 연구에서는 피부 각질세포에서 UVB에 의한 DNA 손상을 완화 시키는 소재로 감초추출물(Glycyrrhiza glabra extract, G. glabra extract)의 효능을 확인하였다. 먼저 피부각질세포에서 UVB 의존적으로 CPD형성이 증가하는 것을 확인하였다. 이후 감초추출물에 의해 UVB 유발 CPD 형성이 유의하게 줄어드는 것을 확인할 수 있었다. 추가로 DNA 손상회복 인자의 mRNA 발현이 감초추출물에 의해 증가하는 것도 확인하였다. 결론적으로 본 연구를 통해 감초추출물의 피부각질세포에서의 DNA 보호 효과를 확인할 수 있었다.

Probiotic Characteristics and Safety Assessment of Lacticaseibacillus casei KGC1201 Isolated from Panax ginseng

  • Yun-Seok Lee;Hye-Young Yu;Mijin Kwon;Seung-Ho Lee;Ji-In Park;Jiho Seo;Sang-Kyu Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권4호
    • /
    • pp.519-526
    • /
    • 2023
  • Panax ginseng is one of the most important herbal medicinal plants consumed as health functional food and can be fermented to achieve better efficacy. Lacticaseibacillus, one of the representative genera among lactic acid bacteria (LAB), has also been used as a probiotic material for health functional foods due to its beneficial effects on the human body. To achieve a synergistic effect by using these excellent dietary supplement ingredients together, a novel LAB strain was isolated from the root of 6-year-old ginseng. Through similarity analysis of 16S rRNAs and whole-genome sequences, the strain was confirmed as belonging to the genus Lacticaseibacillus and was named L. casei KGC1201. KGC1201 not only met all safety standards as food, but also showed excellent probiotic properties such as acid resistance, bile salt resistance, and intestinal adhesion. In particular, KGC1201 exhibited superior acid resistance through morphological observation identifying that the cell surface damage of KGC1201 was less than that of the L. casei type strain KCTC3109. Gene expression studies were conducted to elucidate the molecular mechanisms of KGC1201's acid resistance, and the expression of the glycosyltransferase gene was found to be significantly elevated under acidic conditions. Exopolysaccharides (EPSs) biosynthesized by glycosyltransferase were also increased in KGC1201 compared to KCTC3109, which may contribute to better protection of KGC1201 cells from strong acidity. Therefore, KGC1201, with its increased acid resistance through molecular mechanisms and excellent probiotic properties, can be used in health functional foods to provide greater benefit to overall human health and well-being.