DOI QR코드

DOI QR Code

Analysis of the transcripts encoding for antigenic proteins of bovine gammaherpesvirus 4

  • Romeo, Florencia (Agencia Nacional de Promoción Científica y Tecnologica) ;
  • Spetter, Maximiliano J. (Consejo Nacional de Investigaciones Científicas y Tecnicas) ;
  • Moran, Pedro (Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires) ;
  • Pereyra, Susana (Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Balcarce) ;
  • Odeon, Anselmo (Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Balcarce) ;
  • Perez, Sandra E. (Consejo Nacional de Investigaciones Científicas y Tecnicas) ;
  • Verna, Andrea E. (Consejo Nacional de Investigaciones Científicas y Tecnicas)
  • Received : 2019.07.12
  • Accepted : 2019.10.21
  • Published : 2020.01.31

Abstract

The major glycoproteins of bovine gammaherpesvirus 4 (BoHV-4) are gB, gH, gM, gL, and gp180 with gB, gH, and gp180 being the most glycosylated. These glycoproteins participate in cell binding while some act as neutralization targets. Glycosylation of these envelope proteins may be involved in virion protection against neutralization by antibodies. In infected cattle, BoHV-4 induces an immune response characterized by low neutralizing antibody levels or an absence of such antibodies. Therefore, virus seroneutralization in vitro cannot always be easily demonstrated. The aim of this study was to evaluate the neutralizing capacity of 2 Argentine BoHV-4 strains and to associate those findings with the gene expression profiles of the major envelope glycoproteins. Expression of genes coding for the envelope glycoproteins occurred earlier in cells infected with isolate 10/154 than in cells infected with strain 07/435, demonstrating a distinct difference between the strains. Differences in serological response can be attributed to differences in the expression of antigenic proteins or to post-translational modifications that mask neutralizing epitopes. Strain 07/435 induced significantly high titers of neutralizing antibodies in several animal species in addition to bovines. The most relevant serological differences were observed in adult animals. This is the first comprehensive analysis of the expression kinetics of genes coding for BoHV-4 glycoproteins in 2 Argentine strains (genotypes 1 and 2). The results further elucidate the BoHV-4 life cycle and may also help determine the genetic variability of the strains circulating in Argentina.

Keywords

Acknowledgement

All authors agree to the conditions outlined in the copyright assignment form included. This work was supported by Agencia Nacional de Tecnologia (FONCyT) through PICT 2015-2263.

References

  1. Davison AJ, Eberle R, Ehlers B, Hayward GS, McGeoch DJ, Minson AC, Pellett PE, Roizman B, Studdert MJ, Thiry E. The order Herpesvirales. Arch Virol 2009;154:171-177. https://doi.org/10.1007/s00705-008-0278-4
  2. Thiry E, Bublot M, Dubuisson J, Van Bressem MF, Lequarre AS, Lomonte P, Vanderplasschen A, Pastoret PP. Molecular biology of bovine herpesvirus type 4. Vet Microbiol 1992;33:79-92. https://doi.org/10.1016/0378-1135(92)90037-T
  3. Knipe DM, Cliffe A. Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Microbiol 2008;6:211-221. https://doi.org/10.1038/nrmicro1794
  4. Franceschi V, Capocefalo A, Cavirani S, Donofrio G. Bovine herpesvirus 4 glycoprotein B is indispensable for lytic replication and irreplaceable by VSVg. BMC Vet Res 2013;9:6. https://doi.org/10.1186/1746-6148-9-6
  5. Connolly SA, Jackson JO, Jardetzky TS, Longnecker R. Fusing structure and function: a structural view of the herpesvirus entry machinery. Nat Rev Microbiol 2011;9:369-381. https://doi.org/10.1038/nrmicro2548
  6. Spear PG, Longnecker R. Herpesvirus entry: an update. J Virol 2003;77:10179-10185. https://doi.org/10.1128/JVI.77.19.10179-10185.2003
  7. Heldwein EE, Krummenacher C. Entry of herpesviruses into mammalian cells. Cell Mol Life Sci 2008;65:1653-1668. https://doi.org/10.1007/s00018-008-7570-z
  8. Lete C, Palmeira L, Leroy B, Mast J, Machiels B, Wattiez R, Vanderplasschen A, Gillet L. Proteomic characterization of bovine herpesvirus 4 extracellular virions. J Virol 2012;86:11567-11580. https://doi.org/10.1128/JVI.00456-12
  9. Machiels B, Lete C, Guillaume A, Mast J, Stevenson PG, Vanderplasschen A, Gillet L. Antibody evasion by a gammaherpesvirus O-glycan shield. PLoS Pathog 2011;7:e1002387. https://doi.org/10.1371/journal.ppat.1002387
  10. Dimmock NJ. Mechanisms of neutralization of animal viruses. J Gen Virol 1984;65:1015-1022. https://doi.org/10.1099/0022-1317-65-6-1015
  11. Dimmock NJ. Multiple mechanisms of neutralization of animal viruses. Trends Biochem Sci 1987;12:70-75. https://doi.org/10.1016/0968-0004(87)90034-X
  12. Thiry E, Bublot M, Dubuisson J, Pastoret PP. Bovine herpesvirus-4 (BHV-4) infection of cattle. In: Wittmann G (ed.). Herpesvirus Diseases of Cattle, Horses, and Pigs. pp. 96-115, Springer, Boston, 1989.
  13. Frazier KS, Baldwin CA, Pence M, West J, Bernard J, Liggett A, Miller D, Hines ME 2nd. Seroprevalence and comparison of isolates of endometriotropic bovine herpesvirus-4. J Vet Diagn Invest 2002;14:457-462. https://doi.org/10.1177/104063870201400602
  14. Verna AE, Manrique JM, Perez SE, Leunda MR, Pereyra SB, Jones LR, Odeon AC. Genomic analysis of bovine herpesvirus type 4 (BoHV-4) from Argentina: high genetic variability and novel phylogenetic groups. Vet Microbiol 2012;160:1-8. https://doi.org/10.1016/j.vetmic.2012.04.039
  15. Reed LJ, Muench H. A simple method of estimating fifty percent endpoints. Am J Hyg 1938;27:493-497.
  16. Franceschi V, Capocefalo A, Ravanetti L, Vanderplasschen A, Gillet L, Cavirani S, van Santen VL, Donofrio G. Bovine herpesvirus 4 immediate early 2 (Rta) gene is an essential gene and is duplicated in bovine herpesvirus 4 isolate U. Vet Microbiol 2011;148:219-231. https://doi.org/10.1016/j.vetmic.2010.09.031
  17. Dubuisson J, Guillaume J, Boulanger D, Thiry E, Bublot M, Pastoret PP. Neutralization of bovine herpesvirus type 4 by pairs of monoclonal antibodies raised against two glycoproteins and identification of antigenic determinants involved in neutralization. J Gen Virol 1990;71:647-653. https://doi.org/10.1099/0022-1317-71-3-647
  18. Essmail M, Baker D, Collins J, Vandewoude S, Salman M, Hegazy AA. Dot immunobinding assay for detection of bovine herpesvirus 4 antibodies in rabbits. J Vet Diagn Invest 1999;11:237-239. https://doi.org/10.1177/104063879901100305
  19. Zeippen C, Javaux J, Xiao X, Ledecq M, Mast J, Farnir F, Vanderplasschen A, Stevenson P, Gillet L. The major envelope glycoprotein of murid herpesvirus 4 promotes sexual transmission. J Virol 2017;91:e00235-17.
  20. Thome M, Schneider P, Hofmann K, Fickenscher H, Meinl E, Neipel F, Mattmann C, Burns K, Bodmer JL, Schroter M, Scaffidi C, Krammer PH, Peter ME, Tschopp J. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 1997;386:517-521. https://doi.org/10.1038/386517a0
  21. Vigerust DJ, Shepherd VL. Virus glycosylation: role in virulence and immune interactions. Trends Microbiol 2007;15:211-218. https://doi.org/10.1016/j.tim.2007.03.003
  22. van Santen VL. Characterization of a bovine herpesvirus 4 immediate-early RNA encoding a homolog of the Epstein-Barr virus R transactivator. J Virol 1993;67:773-784. https://doi.org/10.1128/jvi.67.2.773-784.1993
  23. Donofrio G, Cavirani S, Taddei S, Flammini CF. Activation of bovine herpesvirus 4 lytic replication in a non-permissive cell line by overexpression of BoHV-4 immediate early (IE) 2 gene. J Virol Methods 2004;116:203-207. https://doi.org/10.1016/j.jviromet.2003.11.019
  24. Tebaldi G, Jacca S, Montanini B, Capra E, Rosamilia A, Sala A, Stella A, Castiglioni B, Ottonello S, Donofrio G. Virus-mediated metalloproteinase 1 induction revealed by transcriptome profiling of bovine herpesvirus 4-infected bovine endometrial stromal cells. Biol Reprod 2016;95:12. https://doi.org/10.1095/biolreprod.116.139097