• 제목/요약/키워드: cavitation damage

검색결과 141건 처리시간 0.026초

디젤 엔진 연료 분사 펌프 캐비테이션 현상의 가시화 연구 (Optical Observation of Cavitation Phenomena in Diesel Fuel Injection Pumps)

  • 류승협;김동훈;김병석;박태형
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권4호
    • /
    • pp.460-467
    • /
    • 2011
  • 중속 디젤 엔진에 적용된 연료 펌프의 스필 포트 및 플런저 벽면에서 발생하는 캐비테이션 손상 원인을 규명하기 위해, 연료 펌프의 스필 포트 내부에서 일어나는 캐비테이션 유동 현상에 대한 가시화를 수행 하였다. 이를 위해 기존 연료 펌프를 개조하여 사파이어 가시창을 제작, 설치하고, 고속 카메라와 Nd-YAG 레이져 및 산업용 내시경을 이용한 다양한 가시화 방법을 모색하였다. 취득한 영상의 분석 결과 연료의 분사 과정 동안 네 가지 형태의 특징적인 캐비테이션 현상이 목격되며, 특히 연료 압송 과정의 종료 직전과 직후 에서 발생하는 분수 형태와 제트 형태의 캐비테이션이 손상의 지배적인 원인으로 판명되었다.

복합재료를 이용한 유동유체 환경하의 각종 구조물의 캐비테이션 침식손상의 최소화 방안 (Minimizing of Cavitation-Erosion Damage for Various Structures using Composites under the various Condition of Fluid Flow Systems)

  • 이정주;김찬공;김용직;김윤해
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.227-233
    • /
    • 1999
  • This study is mainly concerned with phenomenon of cavitation-erosion on the several materials and corrosive liquids which were applied with vibrator (suggested by ASTM G-32, 20KHZ, 24{$mu}m$).The main results obtained are summarized as follows ; (1) The maximum erosion rate by cavitation erosion in both of fresh-water and sea-water appeared to be proportioned to their hardness and tensile strength. (2) Cavitation weight loss and rate of cast iron in sea-water condition were greater (approximately 3 times) than that in distilled-water condition, however in case of stainless and brass the cavitation weight loss and their rates were not so different in both of their conditions. (3) Cavitation weight loss of composite materials were shown as below on this test, DuraTough DL : Weight loss in sea-water condition were greater (approximately 2.3 times) than it's fresh-water condition. (4) As the result of observation with digital camea of specimens, the main tendency of cavitation erosion for metals, was that small damaged holes causing by cavitation e개sion was appeared with radial pattern, and composites materials was that small damaged holes were appeared randomly.

  • PDF

Cavitation state identification of centrifugal pump based on CEEMD-DRSN

  • Cui Dai;Siyuan Hu;Yuhang Zhang;Zeyu Chen;Liang Dong
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1507-1517
    • /
    • 2023
  • Centrifugal pumps are a crucial part of nuclear power plants, and their dependable and safe operation is crucial to the security of the entire facility. Cavitation will cause the centrifugal pump to violently vibration with the large number of vacuoles generated, which not only affect the hydraulic performance of the centrifugal pump but also cause structural damage to the impeller, seriously affecting the operational safety of nuclear power plants. A closed cavitation test bench of a centrifugal pump is constructed, and a method for precisely identifying the cavitation state is proposed based on Complementary Ensemble Empirical Mode Decomposition (CEEMD) and Deep Residual Shrinkage Network (DRSN). First, we compared the cavitation sensitivity of pressure fluctuation, vibration, and liquid-borne noise and decomposed the liquid-borne noise by CEEMD to capture cavitation characteristics. The decomposition results are sent into a 12-layer deep residual shrinkage network (DRSN) for cavitation identification training. The results demonstrate that the liquid-borne noise signal is the most cavitation-sensitive signal, and the accuracy of CEEMD-DRSN to identify cavitation at different stages of centrifugal pumps arrives at 94.61%

취수펌프에서의 캐비테이션 분석에 관한 연구 (A Study on the Analysis of Cavitation in Intake Pump)

  • 김용열;차인호;이제균;권기범;이종익;김한일
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.144-147
    • /
    • 2008
  • Intake pump for waterworks is badly damaged by a small amount of cavitation because of variable water quality and severe operation conditions. In general, the required NPSH for reduced cavitation can be provided by inlet condition, supply air, change pump and inducer. But once the pump has been built and installed there is little that can be done to reduce cavitation damage. In this study, we analysed the cavitation of paldang intake pump and intended to avoid the same phenomena.

  • PDF

소화용 버터플라이 밸브의 유동특성에 관한 연구 (A Study on the Flow Characteristics of a Butterfly Valve in Fire Protection)

  • 이동명;김엽래
    • 한국화재소방학회논문지
    • /
    • 제16권4호
    • /
    • pp.59-64
    • /
    • 2002
  • 버터플라이 밸브의 압력손실과 캐비테이션에 대한 유동특성 연구를 수행하였다. 밸브의 열림각에 대한 압력손실계수는 Carnot 방정식을 응용하여 수식화하였다. 캐비테이션(캐비테이션의 발단, 슈퍼 캐비테이션, 캐비테이션 손상, 초킹 캐비테이션과 같은)은 밸브의 압력손실계수로부터 예측되었다. 압력손실과 캐비테이션 예측은 밸브의 열림각에 대한 두께 비의 변화에 따라 수행하였다. 예측 데이터는 버터플라이 밸브를 개발하는데 필요한 엔지니어링 데이터로 활용하고자 한다.

고무 변성 에폭시의 고인화 메카니즘 (The Toughening Mechanism of the Rubber-Modified Epoxy Resin)

  • 이덕보;최낙삼
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.106-109
    • /
    • 2001
  • In this work, we investigate the toughening mechanism of the rubber-modified epoxy resin. The fracture toughness($K_{IC}$) is measured using CT specimens for three kinds of rubber-modified epoxy resin with different rubber content. The damage zone and rubber particles around a crack tip of a damaged specimen just before fracture are observed by a polarization microscope and an atomic force microscope(AFM). Both the fracture energy($G_{IC}$) and the size of damage zone increase with the rubber content below l5wt%. The size of the rubber particles can be qualitatively correlated with the $G_{IC}$ and the size of damage zone. The cavitation of the rubber particles inside the damage zone is observed, which is expected to be main toughening mechanism by rubber particles. the stress which causes the cavitation of rubber particles is estimated by the Dugdale model.

  • PDF

ALBC3 합금의 수소과전압 현상을 이용한 캐비테이션과 전기화학적 특성 (Cavitation and Electrochemical Characteristics Using Hydrogen Overpotential Method for ALBC3 Alloy)

  • 박재철;이승준;김성종
    • 한국표면공학회지
    • /
    • 제44권6호
    • /
    • pp.277-283
    • /
    • 2011
  • In this study, the cavitation test and electrochemical experiments were conducted for ALBC3(Cu-Al) alloy that has an excellent corrosion resistance and cavitation characteristic in sea water. Based on the ASTMG32 regulation, the cavitation test was performed with the cavitation and cavitation erosion tester using piezoelectric effect. The electrochemical characteristics are evaluated with potentiostatic experiments in activation polarization potential range. As a result, cavitation damage is increased proportionally to temperature and time at $30{\mu}m$ amplitude. It is appeared that acceleration period in weight loss presented over 6 hours under the cavitation environment in sea water. In addition, corrosion damages were observed at the potential range of -3.2~-1.4 V as the result of potensiostatic experiments during 12 hours in activation polarization potential range.

Mechanism for Cavitation Phenomenon in Mechanical Heart Valves

  • Lee Hwan-Sung;Taenaka Yoshiyuki
    • Journal of Mechanical Science and Technology
    • /
    • 제20권8호
    • /
    • pp.1118-1124
    • /
    • 2006
  • Recently, cavitation on the surface of mechanical heart valve has been studied as a cause of fractures occurring in implanted Mechanical Heart Valves (MHVs). It has been conceived that the MHVs mounted in an artificial heart close much faster than in vivo sue, resulting in cavitation bubbles formation. In this study, six different kinds of mono leaflet and bileaflet valves were mounted in the mitral position in an Electro-Hydraulic Total Artificial Heart (EHTAH), and we investigated the mechanisms for MHV cavitation. The valve closing velocity and a high speed video camera were employed to investigate the mechanism for MHV cavitation. The closing velocity of the bileaflet valves was slower than that of the mono leaflet valves. Cavitation bubbles were concentrated on the edge of the valve stop and along the leaflet tip. It was established that squeeze flow holds the key to MHV cavitation in our study. Cavitation intensity increased with an increase in the valve closing velocity and the valve stop area. With regard to squeeze flow, the bileaflet valve with slow valve-closing velocity and small valve stop areas is better able to prevent blood cell damage than the monoleaflet valves.

원전 해수 펌프 임펠러 합금의 케비테이션 피로 손상 해석 (An Analysis on Fatigue Fracture of Nuclear Pump Impeller Alloys by Ultrasonic Vibratory Cavitation Erosion)

  • 홍성모;이민구;김광호;이창규
    • 한국표면공학회지
    • /
    • 제39권1호
    • /
    • pp.35-42
    • /
    • 2006
  • In this study, the fatigue properties on the cavitation damage of the flame quenched 8.8Al-bronze (8.8Al-4.5Ni-4.5Fe-Cu) as well as the current nuclear pump impeller materials (8.8Al-bronze, STS316 and SR50A) has been investigated using an ultrasonic vibratory cavitation test. For this the impact loads of cavitation bubbles generated by ultrasonic vibratory device quantitatively evaluated and simultaneously the cavitation erosion experiments have been carried out. The fatigue analysis on the cavitation damage of the materials has been made from the determined impact load distribution (e.g. impact load, bubble count) and erosion parameters (e.g. incubation period, MDPR). According to Miner's law, the determined exponents b of the F-N relation ($F^b$ N = Constant) at the incubation stage (N: the number of fracture cycle) were 5.62, 4.16, 6.25 and 8.1 for the 8.8Al-bronze, flame quenched one, STS316 and SR50A alloys. respectively. At the steady state period, the exponents b of the F-N' curve (N': the number of cycle required for $1{\mu}m$ increment of MDP) were determined as 6.32, 5, 7.14 and 7.76 for the 8.8Al-bronze, flame quenched one, STS316, and SR50A alloys, respectively.

오스테나이트계 304 스테인리스강의 케비테이션 기포 및 고체 입자 동시 충격 손상의 정량적 고찰 (Quantitative Analysis on the Damage of the Austenitic Stainless Steel under the Simultaneous Cavitation Bubble and Solid Particle Collapses)

  • 홍성모;박진주;이민구;이창규
    • 대한금속재료학회지
    • /
    • 제48권10호
    • /
    • pp.893-900
    • /
    • 2010
  • In the present work, the impact loads and their effects on the surface damage under the simultaneous cavitation bubble and solid particle collapses in the sea water have been quantitatively investigated for the austenitic 304 stainless steel by using a vibratory cavitation test device. To do this, angular $SiO_2$ solid particles with an average size of $150{\mu}m$ were dispersed into the test liquid, and the measured impact amplitudes were converted into the impact loads by a steel ball drop test. The maximum impact load was determined to be 28.2 N in the absence of solid particles, but increased to 33.7 N in the presence of solid particles. In addition, the critical impact loads, $L_{crit}$, required to generate pits with sizes greater than $3{\mu}m$ were measured to be 19.6 N and 16.6 N, respectively, for the cavitation bubble collapse and solid particle collapse. As a result of the cavitation erosion test, the incubation time and erosion rate were 1.2 times lower and 1.5 times higher, respectively, by a solid particle collapse compared to those only by the cavitation bubble collapse, indicating a drastic decrease in a resistance to cavitation erosion by the solid particle collapse.