DOI QR코드

DOI QR Code

Quantitative Analysis on the Damage of the Austenitic Stainless Steel under the Simultaneous Cavitation Bubble and Solid Particle Collapses

오스테나이트계 304 스테인리스강의 케비테이션 기포 및 고체 입자 동시 충격 손상의 정량적 고찰

  • Hong, Sung-Mo (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Park, Jin-Ju (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Lee, Min-Ku (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Rhee, Chang-Kyu (Nuclear Materials Research Division, Korea Atomic Energy Research Institute)
  • 홍성모 (한국원자력연구원 원자력재료연구부) ;
  • 박진주 (한국원자력연구원 원자력재료연구부) ;
  • 이민구 (한국원자력연구원 원자력재료연구부) ;
  • 이창규 (한국원자력연구원 원자력재료연구부)
  • Received : 2010.06.18
  • Published : 2010.10.22

Abstract

In the present work, the impact loads and their effects on the surface damage under the simultaneous cavitation bubble and solid particle collapses in the sea water have been quantitatively investigated for the austenitic 304 stainless steel by using a vibratory cavitation test device. To do this, angular $SiO_2$ solid particles with an average size of $150{\mu}m$ were dispersed into the test liquid, and the measured impact amplitudes were converted into the impact loads by a steel ball drop test. The maximum impact load was determined to be 28.2 N in the absence of solid particles, but increased to 33.7 N in the presence of solid particles. In addition, the critical impact loads, $L_{crit}$, required to generate pits with sizes greater than $3{\mu}m$ were measured to be 19.6 N and 16.6 N, respectively, for the cavitation bubble collapse and solid particle collapse. As a result of the cavitation erosion test, the incubation time and erosion rate were 1.2 times lower and 1.5 times higher, respectively, by a solid particle collapse compared to those only by the cavitation bubble collapse, indicating a drastic decrease in a resistance to cavitation erosion by the solid particle collapse.

Keywords

Acknowledgement

Grant : 원전 구조소재 신공정 연구

Supported by : 한국원자력연구원

References

  1. ASM metals handbook: properties and selection: Stainless Steel, Tool Materials and Special Purpose Metals, ASM, Metals Park, OH, 3, 105 (1980).
  2. V. K. Gouda, H. M. Shalaby, and W. Riad, Mater. Perform. 28, 53 (1989).
  3. A. Al-Hashem and W. Riad, Materials Characterization 47, 389 (2001). https://doi.org/10.1016/S1044-5803(02)00186-9
  4. J. L. Heuze and A. Karimi, Proceedings Cavitation 91 Symposium, The 1st ASME-JSME Fluids Engineering Conference, Portland Oregon, June 23-27, 116, 113 (1991).
  5. S. I. Shim, Y. S. Park, S. T. Kim, and C. B. Song, Met. Mater. Int. 8, 301 (2002). https://doi.org/10.1007/BF03186100
  6. W. J. Tomlinson and D. Chapman, Wear 130, 381 (1989). https://doi.org/10.1016/0043-1648(89)90191-9
  7. P. V. Marques and R. da Exaltacao Trevisan, Materials Characterization 41, 193 (1998). https://doi.org/10.1016/S1044-5803(98)00038-2
  8. S. Huang and A. Ihara, J. F. Eng. 118, 749 (1996). https://doi.org/10.1115/1.2835505
  9. S. Hattori and E. Nakao, Wear 249, 839 (2002).
  10. D. C. Wen, ISIJ. Int. 46, 728 (2006). https://doi.org/10.2355/isijinternational.46.728
  11. H. Chen, J. Wang, and D. Chen, Wear 266, 345 (2009). https://doi.org/10.1016/j.wear.2008.05.010
  12. T. Kawazoe, A. Ura, M. Satio, and S. Nishikido, Surf. Eng. 13, 37 (1997). https://doi.org/10.1179/sur.1997.13.1.37
  13. C. H. Tang, F. T. Cheng, and H. C. Man, Surf. Coat. Tech. 182, 300 (2004). https://doi.org/10.1016/j.surfcoat.2003.08.048
  14. Annul Book of ASTM standards G32-92, 110 (1992).
  15. Annul Book of ASTM standards D1141-98 (2003).
  16. I. R. Jone and D. H. Edwards, J. Fluid Mech. 7, 596 (1960). https://doi.org/10.1017/S0022112060000311
  17. T. Momma and A. Lichatarowicz, Wear 186, 425 (1995). https://doi.org/10.1016/0043-1648(95)07144-X
  18. M. K. Lee, S. M. Hong, G. H. Kim, and C. K. Rhee, J. Kor. Inst. Met. & Mater. 44, 5 (2006).
  19. M. K. Lee, S. M. Hong, G. H. Kim, K. H. Kim, C. K. Rhee, and W. W. Kim, Mater. Sci. Eng.(A) 425, 15 (2006). https://doi.org/10.1016/j.msea.2006.03.039
  20. George S. Springer, Erosion by liquid impact, p.26-29, John Wiley & Sons, New York (1976).
  21. K. Endo and Y. Nishimura, Bull. JSME 16, 22 (1973). https://doi.org/10.1299/jsme1958.16.22
  22. T. Okada, Y. Iwai, and K. Awazu, Wear 133, 219 (1989). https://doi.org/10.1016/0043-1648(89)90037-9
  23. T. Okada, Y. Iwai, S. Hattori, and N. Tanimura, Wear 184, 231 (1995). https://doi.org/10.1016/0043-1648(94)06581-0
  24. S. Hattori, H. Mori, and T. Okada, J. F. Eng. 120, 179 (1998). https://doi.org/10.1115/1.2819644