An Analysis on Fatigue Fracture of Nuclear Pump Impeller Alloys by Ultrasonic Vibratory Cavitation Erosion

원전 해수 펌프 임펠러 합금의 케비테이션 피로 손상 해석

  • Hong Sung-Mo (Nuclear Nanomaterials Development Lab, Korea Atomic Energy Research Institute) ;
  • Lee Min-Ku (Nuclear Nanomaterials Development Lab, Korea Atomic Energy Research Institute) ;
  • Kim Gwang-Ho (Nuclear Nanomaterials Development Lab, Korea Atomic Energy Research Institute) ;
  • Rhee Chang-Kyu (Nuclear Nanomaterials Development Lab, Korea Atomic Energy Research Institute)
  • 홍성모 (한국원자력연구소 원자력나노소재응용랩) ;
  • 이민구 (한국원자력연구소 원자력나노소재응용랩) ;
  • 김광호 (한국원자력연구소 원자력나노소재응용랩) ;
  • 이창규 (한국원자력연구소 원자력나노소재응용랩)
  • Published : 2006.02.01

Abstract

In this study, the fatigue properties on the cavitation damage of the flame quenched 8.8Al-bronze (8.8Al-4.5Ni-4.5Fe-Cu) as well as the current nuclear pump impeller materials (8.8Al-bronze, STS316 and SR50A) has been investigated using an ultrasonic vibratory cavitation test. For this the impact loads of cavitation bubbles generated by ultrasonic vibratory device quantitatively evaluated and simultaneously the cavitation erosion experiments have been carried out. The fatigue analysis on the cavitation damage of the materials has been made from the determined impact load distribution (e.g. impact load, bubble count) and erosion parameters (e.g. incubation period, MDPR). According to Miner's law, the determined exponents b of the F-N relation ($F^b$ N = Constant) at the incubation stage (N: the number of fracture cycle) were 5.62, 4.16, 6.25 and 8.1 for the 8.8Al-bronze, flame quenched one, STS316 and SR50A alloys. respectively. At the steady state period, the exponents b of the F-N' curve (N': the number of cycle required for $1{\mu}m$ increment of MDP) were determined as 6.32, 5, 7.14 and 7.76 for the 8.8Al-bronze, flame quenched one, STS316, and SR50A alloys, respectively.

Keywords

References

  1. A. Karimi, J. L. Martin, Int. Met. Review, 31 (1986)
  2. T. Okada, Y. Iwai, K. Awazu, Wear., 133 (1989) 219 https://doi.org/10.1016/0043-1648(89)90037-9
  3. Y. Iwai, T. Okada, S. Tanaka, Wear., 133 (1989) 233 https://doi.org/10.1016/0043-1648(89)90038-0
  4. Y. Iwai, T. Okada, H. Mori, Wear., 150 (1991) 367 https://doi.org/10.1016/0043-1648(91)90330-W
  5. T. Okada, Y. Iwai, S. Hattori, N. Tanimura, Wear., 184 (1995) 231 https://doi.org/10.1016/0043-1648(94)06581-0
  6. S. Hattori, H. Mori, T. Okada, Trans. ASME J. Fluids. Eng., 120 (1998) 179 https://doi.org/10.1115/1.2819644
  7. W. C. Leith, A. L. Thomson, Trans. ASME J. Basic. Eng., 82 (1960) 795 https://doi.org/10.1115/1.3662761
  8. H. Mori, S. Hattori, T. Okada, JSME Int. J., 41 (1998) 96 https://doi.org/10.1299/jsmea.41.96
  9. Annul Book of ASTM Standards G32-92, Standard Test Method for Cavitation Erosion Using Vibratory Apparatus, (1992) 110
  10. M. K. Lee, S. M. Hong, G. H. Kim, K. H. Kim, W. W. Kim, Met. Mater. Inter., 10 (2004) 313 https://doi.org/10.1007/BF03185979
  11. S. M. Hong, M. K. Lee, G. H. Kim, K. H. Kim, W. W. Kim, S. I. Hong, J. Kor. Inst. Surf. Eng., 37 (2004) 234
  12. K. Endo, T. Okada, Y. Baba, Bull. JSME., 12 (1969) 729 https://doi.org/10.1299/jsme1958.12.729