Browse > Article

An Analysis on Fatigue Fracture of Nuclear Pump Impeller Alloys by Ultrasonic Vibratory Cavitation Erosion  

Hong Sung-Mo (Nuclear Nanomaterials Development Lab, Korea Atomic Energy Research Institute)
Lee Min-Ku (Nuclear Nanomaterials Development Lab, Korea Atomic Energy Research Institute)
Kim Gwang-Ho (Nuclear Nanomaterials Development Lab, Korea Atomic Energy Research Institute)
Rhee Chang-Kyu (Nuclear Nanomaterials Development Lab, Korea Atomic Energy Research Institute)
Publication Information
Journal of the Korean institute of surface engineering / v.39, no.1, 2006 , pp. 35-42 More about this Journal
Abstract
In this study, the fatigue properties on the cavitation damage of the flame quenched 8.8Al-bronze (8.8Al-4.5Ni-4.5Fe-Cu) as well as the current nuclear pump impeller materials (8.8Al-bronze, STS316 and SR50A) has been investigated using an ultrasonic vibratory cavitation test. For this the impact loads of cavitation bubbles generated by ultrasonic vibratory device quantitatively evaluated and simultaneously the cavitation erosion experiments have been carried out. The fatigue analysis on the cavitation damage of the materials has been made from the determined impact load distribution (e.g. impact load, bubble count) and erosion parameters (e.g. incubation period, MDPR). According to Miner's law, the determined exponents b of the F-N relation ($F^b$ N = Constant) at the incubation stage (N: the number of fracture cycle) were 5.62, 4.16, 6.25 and 8.1 for the 8.8Al-bronze, flame quenched one, STS316 and SR50A alloys. respectively. At the steady state period, the exponents b of the F-N' curve (N': the number of cycle required for $1{\mu}m$ increment of MDP) were determined as 6.32, 5, 7.14 and 7.76 for the 8.8Al-bronze, flame quenched one, STS316, and SR50A alloys, respectively.
Keywords
Cavitation; Erosion; Impact load; Aluminum bronze; Fatigue fracture; Miner's law;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Okada, Y. Iwai, K. Awazu, Wear., 133 (1989) 219   DOI   ScienceOn
2 Y. Iwai, T. Okada, S. Tanaka, Wear., 133 (1989) 233   DOI   ScienceOn
3 Y. Iwai, T. Okada, H. Mori, Wear., 150 (1991) 367   DOI
4 S. Hattori, H. Mori, T. Okada, Trans. ASME J. Fluids. Eng., 120 (1998) 179   DOI   ScienceOn
5 Annul Book of ASTM Standards G32-92, Standard Test Method for Cavitation Erosion Using Vibratory Apparatus, (1992) 110
6 A. Karimi, J. L. Martin, Int. Met. Review, 31 (1986)
7 T. Okada, Y. Iwai, S. Hattori, N. Tanimura, Wear., 184 (1995) 231   DOI   ScienceOn
8 W. C. Leith, A. L. Thomson, Trans. ASME J. Basic. Eng., 82 (1960) 795   DOI
9 S. M. Hong, M. K. Lee, G. H. Kim, K. H. Kim, W. W. Kim, S. I. Hong, J. Kor. Inst. Surf. Eng., 37 (2004) 234
10 M. K. Lee, S. M. Hong, G. H. Kim, K. H. Kim, W. W. Kim, Met. Mater. Inter., 10 (2004) 313   DOI   ScienceOn
11 K. Endo, T. Okada, Y. Baba, Bull. JSME., 12 (1969) 729   DOI
12 H. Mori, S. Hattori, T. Okada, JSME Int. J., 41 (1998) 96   DOI   ScienceOn