• Title/Summary/Keyword: caspase 9

Search Result 645, Processing Time 0.023 seconds

Effect of Depletion and Oxidation of Cellular GSH on Cytotoxicity of Mitomycin Small Cell Lung Cancer Cells

  • Lee, Chung-Soo
    • Biomolecules & Therapeutics
    • /
    • v.12 no.2
    • /
    • pp.92-100
    • /
    • 2004
  • Effect of the depletion or oxidation of GSH on mitomycin c (MMC)-induced mitochondrial damage and cell death was assessed in small cell lung cancer (SCLC) cells. MMC induced cell death and the decrease in the GSH contents in SCLC cells, which were inhibited by z-LEHD.fmk (a cell permeable inhibitor of caspase-9), z-DQMD.fmk (a cell permeable inhibitor of caspase-3) and thiol compound, N-acetylcysteine. MMC caused nuclear damage, release of cytochrome c and activation of caspase-3, which were reduced by N-acetylcysteine. The depletion of GSH due to L-butionine-sulfoximine enhanced the MMC-induced cell death and formation of reactive oxygen species in SCLC cells, whereas the oxidation of GSH due to diamide or $NH_2Cl$ did not affect cytotoxicity of MMC. The results show that MMC may cause cell death in SCLC cells by inducing mitochondrial dysfunction, leading to activation of caspase-9 and -3. The MMC-induced change in the mitochondrial membrane permeability, followed by cell death, in SCLC cells may be significantly enhanced by the depletion of GSH. In contrast, the oxidation of GSH may not affect cytotoxicity of MMC.

Effect of Citrus macroptera Fruit Pulp Juice on Alteration of Caspase Pathway Rendering Anti-Proliferative Activity against Ehrlich's Ascites Carcinoma in Mice

  • Hasan, Md. Mahmudul;Islam, Md. Shihabul;Hoque, Kazi Md. Faisal;Haque, Ariful;Reza, Md Abu
    • Toxicological Research
    • /
    • v.35 no.3
    • /
    • pp.271-277
    • /
    • 2019
  • Citrus macroptera (Rutaceae) has long been used in folk medicine in Bangladesh. Considering the folkloric context, this study was aimed to scrutinize anti-proliferative activity of C. macroptera fruit pulp juice (CMFPJ) against Ehrlich's ascites carcinoma (EAC). The anti-proliferative capacity of CMFPJ was investigated and confirmed primarily using MTT assay. In vivo anti-proliferative aptitude of CMFPJ was investigated with 25, 50, and 100 mg/kg/day intraperitoneal (i.p.) treatment. Anti-proliferative efficacy of CMFPJ was assessed based on EAC growth inhibition. CMFPJ inhibited EAC growth in vitro in a dose-dependent manner. And the percentages of in vivo EAC growth inhibition were 19.53, 49.2, and 68.9% at 25, 50, and 100 mg/kg CMFPJ respectively. CMFPJ significantly induced expression of apoptosis regulatory genes caspase-8, caspase-9, cytochrome-c, and caspase-3. This considerable anti-cancer activity was perhaps due to combinatorial effect of lectin, polyphenols, and flavonoids present in CMFPJ.

Induction of Apoptosis of DK-5-62, a Novel (-)-Catechin Derivative Through MAPKs Signaling Pathway in HCT116 Cells

  • Guon, Tae Eun;Shin, Dong-Soo;Chung, Ha Sook
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.4
    • /
    • pp.298-304
    • /
    • 2022
  • The present study was designed to investigate the molecular mechanisms of DK-5-62, a novel (-)-catechin derivative on HCT116 human colorectal cancer cells. DK-5-62 inhibited the proliferation in dose- and time-dependent manner accompanied by the morphological changes. Effects of DK-5-62 appeared to be mediated by the induction of apoptosis, as manifested through DNA-binding dye Hoechst 33258 staining. Analysis of the mechanism of these events indicated that DK-5-62-treated cells exhibited an increased ratio of Bax/Bcl-2, resulting in the activation of caspase-9, caspase-3, and poly-ADP-ribose polymerase in a dose-dependent manner. Moreover, DK-5-62-induced apoptosis was accompanied by phosphorylation of the mitogen-activated protein kinase family, c-Jun N-terminal kinase, p38, and extracellular signal-regulated kinase. These results suggest that HCT116 cells are moderately sensitive to growth inhibition by DK-5-62 via apoptosis, as evidenced by activation of ERK/p38/Bcl-2 family signaling, as well as alteration in caspase-9 and caspase-3.

Imyosan induces caspases-mediated apoptosis in human colorectal cancer HCT116 cells (이묘산(二妙散)에 의한 대장암 세포주 HCT116의 Caspases 활성화를 매개로 한 세포사멸)

  • Kim, Sun-Mo;Yun, Hyun-Jeung;Lee, Hyun-Woo;Kim, Pan-Jun;Lee, Chang-Hyun;Park, Won-Hwan;Park, Sun-Dong
    • Herbal Formula Science
    • /
    • v.14 no.2
    • /
    • pp.21-32
    • /
    • 2006
  • The purpose of this study was to investigate the effect of Imyosan on apoptosis in human colorectal cancer HCT116 cells. Phellodendron amurense Rupr. and Atratylodes lancea D.C. compose Imyosan. First of all, to study the cytotoxic effect of methanol extract of Imyosan (IMS-MeOH) on HCT116 cells, the cells were treated with various concentrations of IMS-MeOH and then cell viability was determined by XTT reduction method. IMS-MeOH reduced viability of HCT116 cells in a dose and time-dependent manner. To confirm the induction of apoptosis, the c1eavage of poly ADP-ribose polymerase (PARP), a substrate for caspase-3 and a typical sign of apoptosis, and the activation of caspase-3, procaspase-8 and procaspase-9 were examined by western blot analysis. IMS-MeOH decreased procaspase-3, procaspase-8 and procaspase-9 levels in a dose-dependent manner and induced the clevage of PARP. IMS-MeOH triggered the mitochondrial apoptotic signaling by increasing the release of cytochrome c from mitochondria to cytosol. Furthermore, IMS-MeOH also downregulated the anti-apoptotic Bcl-2 and upregulated the pro-apoptotic-Bax. Therefore, these results suggest that IMS-MeOH induced HCT1l6 cell death through the mitochondrial pathway. To explore whether the activities of caspases was required for induction of apoptosis by IMS-MeOH, caspase-3, -8, -9 activity measured by using substrates, respectively. IMS-MeOH increased caspase-3, -8, -9 activity. Co-treatment with inhibitors of caspase-3, -8, -9 and IMS-MeOH significantly blocked IMS-MeOH-triggered apoptosis in HCT1l6 cells. These results suggest that IMS-MeOH induces caspases-mediated apoptosis.

  • PDF

Apoptosis Induction by Methanol Extract of Prunus mume Fruits in Human Leukemia U937 Cells (인체 백혈병세포에서 매실 추출물에 의한 apoptosis 유도)

  • Chung, You-Jeong;Park, Cheol;Jeong, Yong-Kee;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.21 no.8
    • /
    • pp.1109-1119
    • /
    • 2011
  • In the present study, the pro-apoptotic effects of methanol extract of Prunus mume fruits (MEPM) in human leukemia U937 cells were investigated. It was found that exposure to MEPM resulted in growth inhibition in a concentration-dependent manner by inducing apoptosis. The induction of apoptotic cell death in U937 cells by MEPM was correlated with a down-regulation of inhibitor of apoptosis protein (IAP) family, such as X-linked inhibitor of apoptosis protein (XIAP) and survivin, anti-apoptotic Bcl-2, up-regulation of FasL and cleavage of Bid. MEPM treatment also induced the proteolytic activation of caspase-3, caspase-8 and caspase-9, and degradation of caspase-3 substrate proteins, such as poly (ADP-ribose) polymerase (PARP) and ${\beta}$-catenin. In addition, apoptotic cell death induced by MEPM was significantly inhibited by z-DEVD-fmk, a caspase-3 specific inhibitor, which demonstrates the important role of caspase-3 in the apoptotic process by MEPM in U937 cells. Taken together, these findings suggest that P. mume extracts may be a potential chemotherapeutic agent for the control of human leukemia cells and further studies will be needed to identify the active compounds.

Resveratrol Induces Apoptosis in Primary Human Prostate Cancer Cells (Primary 인체 전립선 암세포에서 Resveratrol의 Apoptosis 유도 효과)

  • Kang, Hye-In;Kim, Jae-Yong;Cho, Hyun-Dong;Park, Kyung-Wuk;Kang, Jum-Soon;Seo, Kwon-Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.8
    • /
    • pp.1119-1125
    • /
    • 2010
  • To evaluate resveratrol as a prostate cancer preventive material, we investigated its anti-proliferative and apoptotic effects in RC-58T/h/SA#4 primary human prostate cancer cells. Resveratrol significantly decreased the number of viable RC-58T/h/SA#4 cells in a dose- and time-dependent manner. Resveratrol showed cytotoxicity against RC-58T/h/SA#4, LNCaP, PC-3 human prostate cancer cells with $IC_{50}$ values of 245, 320 and $340\;{\mu}M$, respectively. However the cytotoxic potential of resveratrol against normal RWPE-1 cells was lower ($IC_{50}=982\;{\mu}M$). Resveratrol induced cell death as evidenced by the increased formation of apoptotic bodies, nuclear condensation, sub-G1 phase, and DNA fragmentation. Resveratrol activated initiator caspases 8, and 9 as well as effector caspase 3 in a dose-dependent manner. Furthermore, the general caspase inhibitor z-VAD-fmk significantly inhibited resveratrol-induced apoptosis compared to cells without treatment. These results clearly indicate that resveratrol-induced apoptosis was dependent on caspase activation. Further, resveratrol modulated the down regulation of Bcl-2 (anti-apoptotic), and Bid. However, the level of Bax (pro-apoptotic) remained unchanged. These results suggest that resveratrol induced apoptosis in RC-58T/h/SA#4 cells via a mitochondrial-mediated caspase-dependent pathway, suggesting therapeutic potential against prostate cancer.

Monitoring of Cleavage Preference for Caspase-3 Using Recombinant Protein Substrates

  • Park, Kyoung-Sook;Yi, So-Yeon;Kim, Un-Lyoung;Lee, Chang-Soo;Chung, Jin-Woong;Chung, Sang-J.;Kim, Moon-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.911-917
    • /
    • 2009
  • The apoptotic caspases have been classified in accordance with their substrate specificities, as the optimal tetrapeptide recognition motifs for a variety of caspases have been determined via positional scanning substrate combinatorial library technology. Here, we focused on two proteolytic recognition motifs, DEVD and IETD, owing to their extensive use in cell death assay. Although DEVE and IETD have been generally considered to be selective for caspase-3 and -8, respectively, the proteolytic cleavage of these substrates does not display absolute specificity for a particular caspase. Thus, we attempted to monitor the cleavage preference for caspase-3, particularly using the recombinant protein substrates. For this aim, the chimeric GST:DEVD:EGFP and GST:IETD:EGFP proteins were genetically constructed by linking GST and EGFP with the linkers harboring DEVD and IETD. To our best knowledge, this work constitutes the first application for the monitoring of cleavage preference employing the recombinant protein substrates that simultaneously allow for mass and fluorescence analyses. Consequently, GST:IETD:EGFP was cleaved partially in response to caspase-3, whereas GST:DEVD:EGFP was completely proteolyzed, indicating that GST:DEVD:EGFP is a better substrate than GST:IETD:EGFP for caspase-3. Collectively, using these chimeric protein substrates, we have successfully evaluated the feasibility of the recombinant protein substrate for applicability to the monitoring of cleavage preference for caspase-3.

Apoptotic Signaling Pathways: Caspases and Stress-Activated Protein Kinases

  • Cho, Ssang-Goo;Choi, Eui-Ju
    • BMB Reports
    • /
    • v.35 no.1
    • /
    • pp.24-27
    • /
    • 2002
  • Apoptotic cell death is an active process mediated by various signaling pathways, which include the caspase cascade and the stress-activated protein kinase pathways. The caspase cascade is activated by two distinct routes: one from cell surface and the other from mitochondria. Activation of the route from cell surface requires the cellular components that include membrane receptors, adaptor proteins such as TRADD and FADD, and caspase-8, while activation of the other from mitochondria requires Apaf-1, caspase-9, and cytosolic cytochrome c. On the other hand, persistent stimulation of the stress-activated protein kinase pathway is also shown to mediate apoptosis in many cell types. Gene-targeting studies with jnk- or jip-null mice, in particular, strongly suggest that this signaling pathway plays a pivotal role in the cellular machinery for apoptosis.

Induction of Apoptosis by Ethanol Extract of Lythrum anceps (Koehne) Makino in Human Leukemia U937 Cells (인체백혈병 U937 세포에서 부처꽃 에탄올추출물에 의한 apoptosis 유도)

  • Jeong, Jin-Woo;Kim, Chul Hwan;Lee, Young-Kyung;Hwang, Yong;Lee, Ki Won;Choi, Kyung-Min;Kim, Jung Il
    • Korean Journal of Plant Resources
    • /
    • v.33 no.4
    • /
    • pp.279-286
    • /
    • 2020
  • Purple loosestrife-Lythrum anceps (Koehne) Makino is a herbaceous perennial plant belonging to the Lythraceae family. It has been used for centuries in Korea and other Asian traditional medicine. It has been showed pharmacological effects, including anti-oxidant and anti-microbial effects. However, the mechanisms underlying its anti-cancer effect are not yet understood. In this study, we investigated the mechanism of apoptosis signaling pathways by ethanol extract of Lythrum anceps (Koehne) Makino (ELM) in human leukemia U937 cells. Treatment with ELM significantly inhibited cell growth in a dose-dependent manner by inducing apoptosis, as evidenced by the formation of apoptotic bodies (ApoBDs), DNA fragmentation and increased populations of sub-G1 ratio. Induction of apoptosis by ELM was connected with up-regulation of death receptor (DR) 4 and DR5, pro-apoptotic Bax protein expression and down-regulation of anti-apoptotic Bcl-2 protein, and inhibitor of apoptosis protein (IAP) family proteins, depending on dosage. This induction was associated with Bid truncation, mitochondrial dysfunction, proteolytic activation of caspases (-3, -8 and -9) and cleavage of poly(ADP-ribose) polymerase protein. Therefore, our data indicate that ELM suppresses U937 cell growth by activating the intrinsic and extrinsic apoptosis pathways, and thus may have applications as a potential source for an anti-leukemic chemotherapeutic agent.

ACOX1 destabilizes p73 to suppress intrinsic apoptosis pathway and regulates sensitivity to doxorubicin in lymphoma cells

  • Zheng, Fei-Meng;Chen, Wang-Bing;Qin, Tao;Lv, Li-Na;Feng, Bi;Lu, Yan-Ling;Li, Zuo-Quan;Wang, Xiao-Chao;Tao, Li-Ju;Li, Hong-Wen;Li, Shu-You
    • BMB Reports
    • /
    • v.52 no.9
    • /
    • pp.566-571
    • /
    • 2019
  • Lymphoma is one of the most curable types of cancer. However, drug resistance is the main challenge faced in lymphoma treatment. Peroxisomal acyl-CoA oxidase 1 (ACOX1) is the rate-limiting enzyme in fatty acid ${\beta}$-oxidation. Deregulation of ACOX1 has been linked to peroxisomal disorders and carcinogenesis in the liver. Currently, there is no information about the function of ACOX1 in lymphoma. In this study, we found that upregulation of ACOX1 promoted proliferation in lymphoma cells, while downregulation of ACOX1 inhibited proliferation and induced apoptosis. Additionally, overexpression of ACOX1 increased resistance to doxorubicin, while suppression of ACOX1 expression markedly potentiated doxorubicin-induced apoptosis. Interestingly, downregulation of ACOX1 promoted mitochondrial location of Bad, reduced mitochondrial membrane potential and provoked apoptosis by activating caspase-9 and caspase-3 related apoptotic pathway. Overexpression of ACOX1 alleviated doxorubicin-induced activation of caspase-9 and caspase-3 and decrease of mitochondrial membrane potential. Importantly, downregulation of ACOX1 increased p73, but not p53, expression. p73 expression was critical for apoptosis induction induced by ACOX1 downregulation. Also, overexpression of ACOX1 significantly reduced stability of p73 protein thereby reducing p73 expression. Thus, our study indicated that suppression of ACOX1 could be a novel and effective approach for treatment of lymphoma.