Browse > Article

Monitoring of Cleavage Preference for Caspase-3 Using Recombinant Protein Substrates  

Park, Kyoung-Sook (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
Yi, So-Yeon (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kim, Un-Lyoung (Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology)
Lee, Chang-Soo (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
Chung, Jin-Woong (Department of Biological Science, Dong-A University)
Chung, Sang-J. (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kim, Moon-Il (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.9, 2009 , pp. 911-917 More about this Journal
Abstract
The apoptotic caspases have been classified in accordance with their substrate specificities, as the optimal tetrapeptide recognition motifs for a variety of caspases have been determined via positional scanning substrate combinatorial library technology. Here, we focused on two proteolytic recognition motifs, DEVD and IETD, owing to their extensive use in cell death assay. Although DEVE and IETD have been generally considered to be selective for caspase-3 and -8, respectively, the proteolytic cleavage of these substrates does not display absolute specificity for a particular caspase. Thus, we attempted to monitor the cleavage preference for caspase-3, particularly using the recombinant protein substrates. For this aim, the chimeric GST:DEVD:EGFP and GST:IETD:EGFP proteins were genetically constructed by linking GST and EGFP with the linkers harboring DEVD and IETD. To our best knowledge, this work constitutes the first application for the monitoring of cleavage preference employing the recombinant protein substrates that simultaneously allow for mass and fluorescence analyses. Consequently, GST:IETD:EGFP was cleaved partially in response to caspase-3, whereas GST:DEVD:EGFP was completely proteolyzed, indicating that GST:DEVD:EGFP is a better substrate than GST:IETD:EGFP for caspase-3. Collectively, using these chimeric protein substrates, we have successfully evaluated the feasibility of the recombinant protein substrate for applicability to the monitoring of cleavage preference for caspase-3.
Keywords
Tetrapeptide; proteolytic indicator; caspase substrate; protease activity;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Casciola-Rosen, L. A., G. J. Anhalt, and A. Rosen. 1995. DNAdependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis. J. Exp. Med. 182: 1625-1634   DOI   ScienceOn
2 Crow, M. T., K. Mani, Y. J. Nam, and R. N. Kitsis. 2004. The mitochondrial death pathway and cardiac myocyte apoptosis. Circ. Res. 95: 957-970   DOI   ScienceOn
3 Jeong, E. J., K. Park, S. Y. Yi, H. J. Kang, S. J. Chung, C. S. Lee, et al. 2007. Stress-governed expression and purification of human type II hexokinase in Escherichia coli. J. Microbiol. Biotechnol. 17: 638-643   PUBMED   ScienceOn
4 Park, K., J. Ahn, S. Y. Yi, M. Kim, and B. H. Chung. 2008. SPR imaging-based monitoring of caspase-3 activation. Biochem. Biophys. Res. Commun. 368: 684-689   DOI   ScienceOn
5 Rhéaume, E., L. Y. Cohen, F. Uhlmann, C. Lazure, A. Alam, J. Hurwitz, R. P. S$\acute{e}$kaly, and F. Denis. 1997. The large subunit of replication factor C is a substrate for caspase-3 in vitro and is cleaved by a caspase-3-like protease during Fas-mediated apoptosis. EMBO J. 16: 6346-6354   DOI   ScienceOn
6 Stennicke, H. R. and G. S. Salvesen. 1999. Catalytic properties of the caspases. Cell Death Differ. 6: 1054-1059   DOI   ScienceOn
7 Tewari, M., L. T. Quan, K. O'Rourke, S. Desnoyers, Z. Zeng, D. R. Beidler, G. G. Poirier, G. S. Salvesen, and V. M. Dixit. 1995. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly (ADP-ribose) polymerase. Cell 81: 801-809   DOI   PUBMED   ScienceOn
8 Thornberry, N. A. and Y. Lazebnik. 1998. Caspases: Enemies within. Science 281: 1312-1316   DOI   PUBMED   ScienceOn
9 Thornberry, N. A., T. A. Rano, E. P. Peterson, D. M. Rasper, T. Timkey, M. Garcia-Calvo, et al. 1997. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272: 17907-17911   DOI   ScienceOn
10 Earnshaw, W. C., L. M. Martins, and S. H. Kaufmann. 1999. Mammalian caspases: Structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68: 383-424   DOI   ScienceOn
11 Park, K., H. J. Kang, J. Ahn, S. Y. Yi, S. H. Han, H. J. Park, S. J. Chung, B. H. Chung, and M. Kim. 2008. A potent reporter applicable to the monitoring of caspase-3-dependent proteolytic cleavage. J. Biotech. 138: 17-23   DOI   ScienceOn
12 Kim, J. H., D. H. Kim, M. R. Kim, H. J. Kwon, T. K. Oh, and C. H. Lee. 2005. Gentisyl alcohol inhibits apoptosis by suppressing caspase activity induced by etoposide. J. Microbiol. Biotechnol. 15: 532-536   ScienceOn
13 Nicholson, D. W., A. Ali, N. A. Thornberry, J. P. Vaillancourt, C. K. Ding, M. Gallant, et al. 1995. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376: 37-43   DOI   ScienceOn
14 Zhivotovsky, B. 2003. Caspases: The enzymes of death. Essays Biochem. 39: 25-40   PUBMED   ScienceOn
15 Jin, Z. and W. S. El-Deiry. 2005. Overview of cell death signaling pathways. Cancer Biol. Ther. 4: 139-163   DOI   ScienceOn
16 Kim, M., K. Park, E. J. Jeong, Y. B. Shin, and B. H. Chung. 2006. Surface plasmon resonance imaging analysis of proteinprotein interactions using on-chip-expressed capture protein. Anal. Biochem. 351: 298-304   DOI   ScienceOn
17 Alnemri, E. S., D. J. Livingston, D. W. Nicholson, G. Salvesen, N. A. Thornberry, W. W. Wong, and J. Yuan. 1996. Human ICE/CED-3 protease nomenclature. Cell 87: 171   DOI   ScienceOn
18 Ro, H. S., H. K. Park, M. G. Kim, and B. H. Chung. 2005. In vitro formation of protein nanoparticle using recombinant human ferritin H and L chains produced from E. coli. J. Microbiol. Biotechnol. 15: 254-258   ScienceOn
19 Khosravi-Far, R. and M. D. Esposti. 2004. Death receptor signals to mitochondria. Cancer Biol. Ther. 3: 1051-1057   DOI   ScienceOn
20 Smith, G. K., D. S. Duch, I. K. Dev, and S. H. Kaufmann. 1992. Metabolic effects and kill of human T-cell leukemia by 5- deazaacyclotetrahydrofolate, a specific inhibitor of glycineamide ribonucleotide transformylase. Cancer Res. 52: 4895-4903   PUBMED   ScienceOn
21 Srinivasula, S. M., M. Ahmad, T. Fernandes-Alnemri, G. Litwack, and E. S. Alnemri. 1996. Molecular ordering of the Fasapoptotic pathway: The Fas/APO-1 protease Mch5 is a CrmAinhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases. Proc. Natl. Acad. Sci. U.S.A. 93: 14486- 14491   DOI   ScienceOn
22 Stennicke, H. R. and G. S. Salvesen. 1999. Caspases: Preparation and characterization. Methods 17: 313-319   DOI   ScienceOn
23 Janicke, R. U., P. Ng, M. L. Sprengart, and A. G. Porter. 1998. Caspase-3 is required for alpha-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. J. Biol. Chem. 273: 15540-15545   DOI   ScienceOn