Browse > Article

Effect of Depletion and Oxidation of Cellular GSH on Cytotoxicity of Mitomycin Small Cell Lung Cancer Cells  

Lee, Chung-Soo (Department of Pharmacology, College of Medicine, Chung-Ang University)
Publication Information
Biomolecules & Therapeutics / v.12, no.2, 2004 , pp. 92-100 More about this Journal
Abstract
Effect of the depletion or oxidation of GSH on mitomycin c (MMC)-induced mitochondrial damage and cell death was assessed in small cell lung cancer (SCLC) cells. MMC induced cell death and the decrease in the GSH contents in SCLC cells, which were inhibited by z-LEHD.fmk (a cell permeable inhibitor of caspase-9), z-DQMD.fmk (a cell permeable inhibitor of caspase-3) and thiol compound, N-acetylcysteine. MMC caused nuclear damage, release of cytochrome c and activation of caspase-3, which were reduced by N-acetylcysteine. The depletion of GSH due to L-butionine-sulfoximine enhanced the MMC-induced cell death and formation of reactive oxygen species in SCLC cells, whereas the oxidation of GSH due to diamide or $NH_2Cl$ did not affect cytotoxicity of MMC. The results show that MMC may cause cell death in SCLC cells by inducing mitochondrial dysfunction, leading to activation of caspase-9 and -3. The MMC-induced change in the mitochondrial membrane permeability, followed by cell death, in SCLC cells may be significantly enhanced by the depletion of GSH. In contrast, the oxidation of GSH may not affect cytotoxicity of MMC.
Keywords
mitomycin c; small cell lung cancer cells; mitochondrial membrane permeability; cell death; depletion and oxidation of GSH;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cummings, J., Spanswick, V. J., Tomasz, M. and Smyth, J. F. (1998). Enzymology of mitomycin c metabolic activation in tumor tissue. Implications for enzyme-directed bioreductive drug development. Biochem. Pharmacol. 56, 405-414   DOI   ScienceOn
2 Fu, W., Luo, H., Parthasarathy, S. and Mattson, M. P. (1998). Catecholamines potentiate amyloid $\beta$-peptide neurotoxicity: involvement of oxidative stress, mitochondrial dysfunction, and perturbed calcium homeostasis. Neurobiol. Dis. 5, 229-243   DOI   ScienceOn
3 Gantchev, T. G. and Hunting, D. J. (1997). Enhancement of etoposide (VP-16) cytotoxicity by enzymatic and photodynamically induced oxidative stress. Anticancer Drugs 8, 164-173   DOI   ScienceOn
4 Mosmann, T (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55-63   DOI   ScienceOn
5 Nakano, H., Sugioka, K., Nakano, M., Mizukami, M., Kimura, H., Tero-Kubota, S. and Ikegami, Y. (1984). Importance of Fe$^2^+$-ADP and the relative unimportance of OH. in the mechanism of mitomycin C-induced lipid peroxidation. Biochim. Biophys. Acta 796, 285-293   DOI   ScienceOn
6 Oberhammer, F. A., Pavelka, M., Sharma, S., Tiefenbacher, R., Purchio, A.F., Bursch, W. and Schulte-Hermann, R. (1992). Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor $\beta$I. Proc. Natl' Acad. Sci. USA 89, 5408-5412   DOI   ScienceOn
7 Amarante-Mendes, G. P., Kim, C.N., Liu, L., Huang, Y., Perkins, C. L., Green, D. R. and Bhalla, K. (1998). Bcr-Abl exerts its antiapoptotic effect against diverse apoptotic stimuli through blockade of mitochondrial release of cytochrome c and activation of caspase-3. Blood 91, 1700-1705
8 Constantini, P. C., Chernyak, B. C., Petronilli, V. and Bernardi, P. (1996). Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites. J. Biochem. BioI. 271, 6746-6751
9 Bernardi, P. (1996). The permeability transition pore. Control points of a cyclosporine A-sensitive mitochondrial channel involved in cell death. Biochim. Biophys. Acta 1275, 5-9   DOI   ScienceOn
10 Chandra, J., Samali, A. and Orrenius, S. (2000). Triggering and modulation of apoptosis by oxidative stress. Free Radic. BioI. Med. 29, 323-333
11 Tan, S., Sagara, Y., Liu, Y., Maher, P. and Schubert, D. (1998). The regulation of reactive oxygen species production during programmed cell death. J. Cell Biol. 141, 1423-1432   DOI   ScienceOn
12 Tang, D. G., Li, L., Zhu, Z. and Joshi, B. (1998). Apoptosis in the absence of cytochrome c accumulation in the cytosol. Biochem. Biophys. Res. Commun. 242, 380-384
13 Troyano, A., Fernandez, C., Sancho, P., de BIas, E. and Aller, P. (2001). Effect of glutathione depletion on antitumor drug toxicity (apoptosis and necrosis) in U-937 human promonocytic cells. The role of intracellular oxidation. J. Biol. Chem. 276, 47107-47115   DOI   ScienceOn
14 Guillouf, C, Wang, T. S., Liu, J., Walsh, C.E., Poirier, G. G., Moustacchi, E. and Rosselli, F. (1999). Fanconi anemia C protein acts at a switch between apoptosis and necrosis in mitomycin C-induced cell death. Exp. Cell Res. 246, 384-394   DOI   ScienceOn
15 Hissin, P. J. and Hilf, R. (1976). A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem. 74, 214-226   DOI   ScienceOn
16 Mignotte, B. and Vayssi$\grave{e}$re, J. L. (1998). Mitochondria and apoptosis. Eur. J. Biochem. 252, 1-15   DOI   ScienceOn
17 Hong, J. S., Ko, H. H., Han, E. S. and Lee, C. S. (2003). Inhibition of bleomycin-induced cell death in rat alveolar macrophages and human lung epithelial cells by ambroxol. Biochem. Pharmacol. 66, 1297-1306   DOI   ScienceOn
18 Jurma, O. P., Hom, D. G. and Andersen, J. K. (1997). Decreased glutathione results in calcium-mediated cell death in PC12. Free Radic. BioI. Med. 23, 1055-1066
19 Kobayashi, T., Sawa, H., Morikawa, J., Jhang, W. and Shiku, H. (2000). Bax induction activates apoptotic cascade via mitochondrial cytochrome c release and Bax overexpression enhances apoptosis induced by chemotherapeutic agents in DLD-I colon cancer cells. Jpn. J. Cancer Res. 91, 1264-1268   DOI
20 Pimia, F., Schneider, E., Betticher, D. C. and Bomer, M. (2002). Mitomycin c induces apoptosis and caspase-8 and-9 processing through a caspase-3 and Fas-independent pathway. Cell Death Differ. 9, 905-914   DOI   ScienceOn
21 Pritsos, C. A. and Sartorelli, A. C. (1986). Generation of reactive oxygen radicals through bioactivation of mitomycin antibiotics. Cancer Res. 46, 3528-3532
22 Simamura, E., Hirai, K.-I., Shimada, H. and Koyama, J. (2001). Apoptosis and epithelial phagocytosis in mitomycin C-treated human pulmonary adenocarcinoma A549 cells. Tissue & Cell 33, 161-168   DOI   ScienceOn
23 Pritsos, C. A., Briggs, L. A. and Gustafson, D. L. (1997). A new cellular target for mitomycin c: a case for mitochondrial DNA. Oneal. Res. 9, 333-337
24 Reed, D. J. (1990). Glutathione: toxicological implications. Annu. Rev. Pharmacol. Toxicol. 30, 603-631
25 Sartorelli, A. C., Hodnick, W. F., Belcourt, M. F., Tomasz, M., Haffty, B., Fisher, J. J. and Rockwell, S. (1994). Mitomycin c: a prototype bioreductive agent. Oncol. Res. 6, 501-508
26 Tamai, H., Kachur, J. F., Grisham, M. B. and Gaginella, T. S. (1991). Scavenging effect of 5-aminosalicylic acid on neutrophil-derived derived oxidants. Possible contribution to the mechanism of action in inflammatory bowel disease. Biochem. Pharmacol. 41, 1001-1006
27 van Klaveren, R. J., Hoet, P. H. M., Pype, J. L., Demedts, M. and Nemery, B. (1997). Increase in $\gamma$-glutamyltransferase by glutathione depletion in rat type II pneumocytes. Free Radic. Biol. Med. 22, 525-534   DOI   ScienceOn
28 Xu, M. and Ashraf, M. (2002). Melatonin protection against lethal myocyte injury induced by doxorubicin as reflected by effects on mitochondrial membrane potential. J. Mol. Cell Cardiol. 34, 75-79   DOI   ScienceOn
29 Wesselborg, S., Engels, I. H., Rossmann, E., Los, M. and Schulze-Osthoff, K. (1999). Anticancer drugs induce caspase-8/FLICE activation and apoptosis in the absence of CD95 receptor/ligand interaction. Blood 93, 3053-3063