• Title/Summary/Keyword: carbon shell

Search Result 302, Processing Time 0.024 seconds

Electrochemical Characteristics of Hybrid Capacitor using Core-shell Structure of MCMB/Li4Ti5O12 Composite (Core-shell 구조의 MCMB/Li4Ti5O12 합성물을 사용한 하이브리드 커패시터의 전기화학적 특성)

  • Ko, Hyoung Shin;Choi, Jeong Eun;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.52-57
    • /
    • 2014
  • The MCMB-$Li_4Ti_5O_{12}$ with core-shell structure was prepared by sol-gel process to improve low cycle capability of MCMB in this study. The electrochemical characteristics were investigated for hybrid capacitor using MCMB-$Li_4Ti_5O_{12}$ as the negative electrode and $LiMn_2O_4$, Active carbon fiber as the positive electrode. The electrochemical behaviors of hybrid capacitor using organic electrolytes ($LiPF_6$, EC/DMC/EMC) were characterized by charge/discharge, cyclic voltammetry, cycle and impedance tests. The hybrid capacitor using MCMB-$Li_4Ti_5O_{12}/LiMn_2O_4$ electrodes had better capacitance than MCMB hybrid systems and was able to deliver a specific energy with 67 Wh/kg at a specific power of 781 W/kg.

The Synthesis and Photocatalytic activity of Carbon Nanotube-mixed TiO2 Nanotubes

  • Park, Chun Woong;Kim, Young Do;Sekino, Tohru;Kim, Se Hoon
    • Journal of Powder Materials
    • /
    • v.24 no.4
    • /
    • pp.279-284
    • /
    • 2017
  • The formation mechanism and photocatalytic properties of a multiwalled carbon nanotube (MWCNT)/$TiO_2$-based nanotube (TNTs) composite are investigated. The CNT/TNT composite is synthesized via a solution chemical route. It is confirmed that this 1-D nanotube composite has a core-shell nanotubular structure, where the TNT surrounds the CNT core. The photocatalytic activity investigated based on the methylene blue degradation test is superior to that of with pure TNT. The CNTs play two important roles in enhancing the photocatalytic activity. One is to act as a template to form the core-shell structure while titanate nanosheets are converted into nanotubes. The other is to act as an electron reservoir that facilitates charge separation and electron transfer from the TNT, thus decreasing the electron-hole recombination efficiency.

3D Hierarchical Heterostructure of TiO2 Nanorod/Carbon Layer/NiMn-Layered Double Hydroxide Nanosheet

  • Zhao, Wei;Jung, Hyunsung
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.365-371
    • /
    • 2018
  • 1D core-shell nanostructures have attracted great attention due to their enhanced physical and chemical properties. Specifically, oriented single-crystalline $TiO_2$ nanorods or nanowires on a transparent conductive substrate would be more desirable as the building core backbone. However, a facile approach to produce such structure-based hybrids is highly demanded. In this study, a three-step hydrothermal method was developed to grow NiMn-layered double hydroxide-decorated $TiO_2$/carbon core-shell nanorod arrays on transparent conductive fluorine-doped tin oxide (FTO) substrates. XRD, SEM, TEM, XPS and Raman were used to analyze the obtained samples. The in-situ fabricated hybrid nanostructured materials are expected to be applicable for photoelectrode working in water splitting.

A nonlocal system for the identification of active vibration response of chiral double walled CNTs

  • Alghamdi, Sami;Hussain, Muzamal;Khadimallah, Mohamed A.;Asghar, Sehar;Ghandourah, Emad;Alzahrani, Ahmed Obaid M.;Alzahrani, M.A.
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.353-361
    • /
    • 2022
  • In this study, an estimation regarding nonlocal shell model based on wave propagation approach has been considered for vibrational behavior of the double walled carbon nanotubes with distinct nonlocal parameters. Vibrations of double walled carbon nanotubes for chiral indices (8, 3) have been analyzed. The significance of small scale is being perceived by developing nonlocal Love shell model. The influence of changing mechanical parameter Poisson's ratio has been investigated in detail. The dominance of boundary conditions via nonlocal parameter is shown graphically. It is found that on increasing the Poisson's ratio, the frequencies increases. It is noted that the frequencies of clamped-clamped frequencies are higher than that of simply-supported and clamped-free edge conditions. The outcomes of frequencies are tested with earlier computations.

Adsorption of Pb(II) Ions from Aqueous Solution Using Activated Carbon Prepared from Areca Catechu Shell: Kinetic, Isotherm and Thermodynamic Studies

  • Muslim, A.;Aprilia, S.;Suha, T.A.;Fitri, Z.
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.3
    • /
    • pp.89-96
    • /
    • 2017
  • This study proposed adsorption of Pb(II) ions from aqueous solution using activated carbon prepared from areca catechu shell (ACS AC) using Timphan Method. The effects of independent variables on adsorption kinetic and isotherm have been investigated by conducting experiments in batch mode at neutral pH. The structural characterization of adsorbent was done by FT-IR and SEM analysis. The Pb(II) adsorption was correlated very well with the pseudo second-order kinetic (PSOKM) and Langmuir isotherm models (LIM). Increasing NaOH mass for activation and adsorption temperature increased weakly all the parameters of adsorption kinetic and isotherm. The Pb(II) ions adsorption capacity of the ACS AC at 27 and $45^{\circ}C$ was 50.51 and 55.25 mg/g, respectively. Thermodynamic parameters were determined, and the results confirmed the Pb(II) ions adsorption should be endothermic and spontaneous process, and both physical and chemical adsorption should be taken place.

Microbial Production of Bacterial Cellulose Using Chestnut Shell Hydrolysates by Gluconacetobacter xylinus ATCC 53524

  • Jeongho Lee;Kang Hyun Lee;Seunghee Kim;Hyerim Son;Youngsang Chun;Chulhwan Park;Hah Young Yoo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.11
    • /
    • pp.1479-1484
    • /
    • 2022
  • Bacterial cellulose (BC) is gaining attention as a carbon-neutral alternative to plant cellulose, and as a means to prevent deforestation and achieve a carbon-neutral society. However, the high cost of fermentation media for BC production is a barrier to its industrialization. In this study, chestnut shell (CS) hydrolysates were used as a carbon source for the BC-producing bacteria strain, Gluconacetobacter xylinus ATCC 53524. To evaluate the suitability of the CS hydrolysates, major inhibitors in the hydrolysates were analyzed, and BC production was profiled during fermentation. CS hydrolysates (40 g glucose/l) contained 1.9 g/l acetic acid when applied directly to the main medium. As a result, the BC concentration at 96 h using the control group and CS hydrolysates was 12.5 g/l and 16.7 g/l, respectively (1.3-fold improved). In addition, the surface morphology of BC derived from CS hydrolysates revealed more densely packed nanofibrils than the control group. In the microbial BC production using CS, the hydrolysate had no inhibitory effect during fermentation, suggesting it is a suitable feedstock for a sustainable and eco-friendly biorefinery. To the best of our knowledge, this is the first study to valorize CS by utilizing it in BC production.

Geometrical nonlinear bending characteristics of SWCNTRC doubly curved shell panels

  • Chavan, Shivaji G.;Lal, Achchhe
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.1
    • /
    • pp.21-49
    • /
    • 2018
  • In this paper, geometric nonlinear bending characteristics of single wall carbon nanotube reinforced composite (SWCNTRC) doubly curved shell panels subjected to uniform transversely loadings are investigated. The nonlinear mathematical model is developed for doubly curved SWCNTRC shell panel on the basis of higher-order shear deformation theory and Green- Lagrange nonlinearity. All nonlinear higher order terms are included in the mathematical model. The effective material properties of SWCNTRC are estimated by using Eshelby-Mori-Tanaka micromechanical approach. The governing equation of the shell panel is obtained using the total potential energy principle and a Newton-Raphson iterative method is employed to compute the nonlinear displacement and stresses. The present results are compared with published literature. The effect of SWCNT volume fraction, width-to-thickness ratio, radius-to-width ratio (R/a), boundary condition, linear and nonlinear deflection, stresses and different types of shell geometry on nonlinear bending response is investigated.

Sustainable Management of Oyster Shell By-Products and Recent Research Techniques (굴 패각 부산물의 지속 가능한 처리 및 최근 연구 기술)

  • Nam, Gnu;Lee, Namju;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Oysters have been continuously produced from all around the world including South Korea every year. The oyster shell by-products accompanied by the oysters have caused the social and environmental problems due to the absence of any method or technique to deal with the by-products. In order to solve those problems, diverse researches and environmental friendly methods using the oyster shells are in development by now due to the possibility as cheap materials. In this review, we discuss the worldwide status of oyster shells and investigate the physical and chemical characteristics of the oyster shells. In addition, we discuss the recent trends about the sustainable methods to utilize the oyster shells.

Viscous fluid induced vibration and instability of FG-CNT-reinforced cylindrical shells integrated with piezoelectric layers

  • Bidgoli, Mahmood Rabani;Karimi, Mohammad Saeed;Arani, Ali Ghorbanpour
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.713-733
    • /
    • 2015
  • In this paper, viscous fluid induced nonlinear free vibration and instability analysis of a functionally graded carbon nanotube-reinforced composite (CNTRC) cylindrical shell integrated with two uniformly distributed piezoelectric layers on the top and bottom surfaces of the cylindrical shell are presented. Single-walled carbon nanotubes (SWCNTs) are selected as reinforcement and effective material properties of FG-CNTRC cylindrical shell are assumed to be graded through the thickness direction and are estimated through the rule of mixture. The elastic foundation is modeled by temperature-dependent orthotropic Pasternak medium. Considering coupling of mechanical and electrical fields, Mindlin shell theory and Hamilton's principle, the motion equations are derived. Nonlinear frequency and critical fluid velocity of sandwich structure are calculated based on differential quadrature method (DQM). The effects of different parameters such as distribution type of SWCNTs, volume fractions of SWCNTs, elastic medium and temperature gradient are discussed on the vibration and instability behavior of the sandwich structure. Results indicate that considering elastic foundation increases frequency and critical fluid velocity of system.