Browse > Article
http://dx.doi.org/10.4150/KPMI.2017.24.4.279

The Synthesis and Photocatalytic activity of Carbon Nanotube-mixed TiO2 Nanotubes  

Park, Chun Woong (Department of Materials Science and Engineering, Hanyang University)
Kim, Young Do (Department of Materials Science and Engineering, Hanyang University)
Sekino, Tohru (The Institute of Scientific and Industrial Research, Osaka University)
Kim, Se Hoon (Materials Convergence & Design R&D Center, KATECH)
Publication Information
Journal of Powder Materials / v.24, no.4, 2017 , pp. 279-284 More about this Journal
Abstract
The formation mechanism and photocatalytic properties of a multiwalled carbon nanotube (MWCNT)/$TiO_2$-based nanotube (TNTs) composite are investigated. The CNT/TNT composite is synthesized via a solution chemical route. It is confirmed that this 1-D nanotube composite has a core-shell nanotubular structure, where the TNT surrounds the CNT core. The photocatalytic activity investigated based on the methylene blue degradation test is superior to that of with pure TNT. The CNTs play two important roles in enhancing the photocatalytic activity. One is to act as a template to form the core-shell structure while titanate nanosheets are converted into nanotubes. The other is to act as an electron reservoir that facilitates charge separation and electron transfer from the TNT, thus decreasing the electron-hole recombination efficiency.
Keywords
CNT-TNT composite; Hydrothermal synthesis; Photocatalyst; $TiO_2$ nanotube; Core-shell structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Sekino, T. Okamoto, T. Kasuga, T. Kusunose, T. Nakayama and K. Niihara: Key Eng. Mat., 317-318 (2006) 251.   DOI
2 A. Michailowski, D. AlMawlawi, G. S. Cheng and M. Moskovits: Chem. Phys. Lett., 349 (2001) 1.   DOI
3 S. M. Liu, L. M. Gan, L. H. Liu, W. D. Zhang and H. C. Zeng: Chem. Mater., 14 (2002) 1391.   DOI
4 D. Eder and A. H. Windle: Adv. Mater., 20 (2008) 1787.   DOI
5 T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara: Adv. Mater., 11 (1999) 1307.   DOI
6 I. Tacchini, A. Anson-Casaos, Y. Yu, M. T. Martinez and M. Lira-Cantu: Mater. Sci. Eng. B, 177 (2012) 19.   DOI
7 W. Wang, C. Lu, Y. Ni, M. Su and Z. Xu: Mater. Lett., 79 (2012) 11.   DOI
8 T. T. Duong, Q. D. Nguyen, S. K. Hong, D. Kim, S. G. Yoon and T. H. Pham: Adv. Mater., 23 (2011) 5557.   DOI
9 R. P. Antony, T. Mathews, A. Dasgupta, S. Dash, A. K. Tyagi and B. Raj: J. Solid State Chem., 184 (2011) 624.   DOI
10 L. Wang, X. Wu and S. Zhang: Appl. Mech. Mater., 130-134 (2012) 1281.
11 S. Iijima: Nature, 354 (1991) 56.   DOI
12 V. Pifferi, G. Facchinetti, A. Villa, L. Prati and L. Falciola: Catal. Today, 249 (2015) 265.   DOI
13 Y. Zhang, Z. R. Tang, X. Fu and Y. J. Xu: ACS Nano, 4 (2010) 7303.   DOI
14 H. Yu, X. Quan, S. Chen and H. Zhao: J. Phys. Chem. C, 111 (2007) 12987.   DOI
15 S. Suzuki and M. Miyayama: J. Ceram. Soc. Japan, 118 (2010) 1154.   DOI
16 M. Hodos, E. Horvath, H. Haspel, A. Kukovecz, Z. Konya and I. Kiricsi: Chem. Phys. Lett., 399 (2004) 512.   DOI
17 L. Qian, Z. L. Du, S. Y. Yang and Z. S. Jin: J. Mol. Struct., 749 (2005) 103.   DOI
18 D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen and E. C. Dickey: J. Mater. Res., 16 (2001) 3331.   DOI
19 S. H. Byeon, S. O. Lee and H. Kim: J. Solid State Chem., 130 (1997) 110.   DOI
20 G. H. Du, Q. Chen, R. C. Che, Z. Y. Yuan and L. M. Peng: Appl. Phys. Lett., 79 (2001) 3702.   DOI
21 D. V. Bavykin, V. N. Parmon, A. A. Lapkin and F. C. Walsh: J. Mater. Chem., 14 (2004) 3370.   DOI
22 A. Kukovecz, M. Hodos, E. Horvath, G. Radnoczi, Z. Konya and I. Kiricsi: J. Phys. Chem. B, 109 (2005) 17781.   DOI
23 Y. Q. Wang, G. Q. Hu, X. F. Duan, H. L. Sun and Q. K. Xue: Chem. Phys. Lett., 365 (2002) 427.   DOI
24 A. Fujishima and K. Honda: Nature, 238 (1972) 37.   DOI
25 E. Borgarello, J. Kiwi, M. Grätzel, E. Peliuetti and M. Visca: J. Am. Chem. Soc., 104 (1982) 2996.   DOI
26 K. E. Karakitsou and X. E. Verykios: J. Phys. Chem., 97 (1993) 1184.   DOI
27 K. Nishijima, T. Fukahori, N. Murakami, T. Kamai, T. Tsubota and T. Ohno: Appl. Catal. A, 337 (2008) 105.   DOI
28 D. V. Bavykin, J. M. Friedrich and F. C. Walsh: Adv. Mater., 18 (2006) 2807.   DOI
29 P. Hoyer: Langmuir 12 (1996) 1411.   DOI
30 T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara: Langmuir, 14 (1998) 3160.   DOI
31 H. Imai, Y. Takei, K. Shimizu, M. Matsuda and H. Hirashima: J. Mater. Chem., 9 (1999) 2971.   DOI
32 A. V. Grigorieva, E. A. Goodilin, L. E. Derlyukova, T. A. Anufrieva, A. B. Tarasov, Y. A. Dobrovolskii and Y. D. Tretyakov: Appl. Catal. A, 362 (2009) 20.   DOI
33 Q. Zhao, M. Li, J. Chu, T. Jiang and H. Yin: Appl. Surf. Sci., 255 (2009) 3773.   DOI
34 K. P. Yu, W. Y. Yu, M. C. Kuo, Y. C. Liou and S. H. Chien: Appl. Catal. B, 84 (2008) 112.   DOI
35 D. J. Park, T. Sekino, S. Tsukuda and S. I. Tanaka: J. Ceram. Soc. Japan, 120 (2012) 307.   DOI
36 A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard and J. M. Herrmann: Appl. Cat. B: Environ., 31 (2001) 145.   DOI