Korean Chem. Eng. Res., 52(1), 52-57 (2014) http://dx.doi.org/10.9713/kcer.2014.52.1.52 PISSN 0304-128X, EISSN 2233-9558

Core-shell 구조의 MCMB/Li₄Ti₅O₁₂ 합성물을 사용한 하이브리드 커패시터의 전기화학적 특성

고형신*·최정은·이종대[†]

충북대학교 화학공학과 361-763 충북 청주시 흥덕구 성봉로 410 *포스코 ESM 760-853 경북 구미시 산동면 봉산리 217 (2013년 9월 12일 접수, 2013년 12월 12일 수정본 접수, 2013년 12월 19일 채택)

Electrochemical Characteristics of Hybrid Capacitor using Core-shell Structure of MCMB/Li₄Ti₅O₁₂ Composite

Hyoung Shin Ko*, Jeong Eun Choi and Jong Dae Lee[†]

Department of Chemical Engineering, Chungbuk National University, 410 Sungbong-ro, Heungduk-gu Cheongju, Chungbuk 361-763, Korea *POSCO ESM, 217 Bongsan-ri, Sandong-myeon, Gumi, Gyeongbuk 760-853, Korea (Received 12 September 2013; Received in revised form 12 December 2013; accepted 19 December 2013)

요 약

본 연구에서는 낮은 사이클 안정성을 갖는 MCMB의 단점을 향상시키기 위하여 높은 사이클 안정성과 부피팽창이 없는 장점을 갖는 물질인 Li₄Ti₅O₁₂를 코팅하여 core-shell 구조의 MCMB/Li₄Ti₅O₁₂를 합성하고 MCMB-Li₄Ti₅O₁₂를 음극으로, LiMn₂O₄, Active carbon fiber를 양극으로 사용하여 단위 셀을 제조하였다. LiPF₆ 염과 EC/DMC/EMC 용매 를 전해질로 사용하여 제조한 하이브리드 커패시터 단위 셀로 충방전, 사이클, 순환전압전류, 임피던스 테스트를 진행 하여 전기화학적 특성을 평가한 결과, MCMB-Li₄Ti₅O₁₂/LiMn₂O₄ 전극을 사용한 하이브리드 커패시터가 MCMB 전극 의 하이브리드 커패시터 보다 좋은 충/방전 성능을 보였고, 67 Wh/kg, 781 W/kg의 에너지밀도와 출력밀도를 나타내었다.

Abstract – The MCMB-Li₄Ti₅O₁₂ with core-shell structure was prepared by sol-gel process to improve low cycle capability of MCMB in this study. The electrochemical characteristics were investigated for hybrid capacitor using MCMB-Li₄Ti₅O₁₂ as the negative electrode and LiMn₂O₄, Active carbon fiber as the positive electrode. The electrochemical behaviors of hybrid capacitor using organic electrolytes (LiPF₆, EC/DMC/EMC) were characterized by charge/discharge, cyclic voltammetry, cycle and impedance tests. The hybrid capacitor using MCMB-Li₄Ti₅O₁₂/LiMn₂O₄ electrodes had better capacitance than MCMB hybrid systems and was able to deliver a specific energy with 67 Wh/kg at a specific power of 781 W/kg.

Key words: Meso Carbon Microbeads, Li₄Ti₅O₁₂, Core-shell Structure, Surface Modification, Hybrid Capacitor

1.서 론

최근 에너지 저장장치로 주목받고 있는 전기 이중층 커패시터 (Electric double layer capacitor)는 저에너지밀도 특성의 재래식 커패 시터의 단점을 보완하여 높은 충방전 효율, 반영구적인 사이클 수명, 높은 출력 밀도를 제공한다[1-3]. 특히 환경 친화적 소재 사용으로 전 기 자동차용 전지 등의 고부가 가치의 장비 활용과 개인용 단말기와 휴대용 전자기기가 보편화됨에 따라 관련 연구도 활발히 진행되고

E-mail: jdlee@chungbuk.ac.kr

있고, 이에 따른 전지 시장의 수요와 적용 분야가 증대되어 그 활용 성이 크게 확대되고 있다[4]. 그러나 전기이중층 커패시터는 높은 출 력밀도 및 장수명 특성에 비해 비정전용량 및 에너지밀도 측면에서 부족한 성능을 보이고 있어 개선이 시급한 실정이다. 따라서 최근의 연구 동향은 비정전용량 및 에너지 밀도를 향상시키기 위하여 현재 사용되고 있는 활성탄 및 전극활물질을 개선하거나 새로운 물질로 대체하려는 노력들이 시도되고 있다[5-7].

전기 이중층 커패시터의 전기 화학적 특성을 개선하기 위하여 전 기이중층 커패시터에 사용되는 카본 소재와 이차전지에서 쓰이는 리 튬염 기반의 금속산화물 소재를 사용하여 전기 이중층 커패시터와 이차전지의 반응을 동시에 이용하는 하이브리드 커패시터(Hybrid capacitor)에 대한 연구가 활발히 진행되고 있다[8]. 이러한 하이브리 드 커패시터의 양극소재로는 주로 리튬계 금속산화물 소재가 사용되

[†]To whom correspondence should be addressed.

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

어 양극에서는 리튬 이온의 탈/삽입 반응이 이루어지고, 음극에서는 전해질 이온들의 전기이중층 흡/탈착 반응이 이루어진다. 하이브리 드 커패시터는 기존 커패시터보다 에너지 밀도와 축전 용량이 향상 되고 따라서 동일 체적대비 기존 커패시터보다 체적당 용량을 증가 시킬 수 있다[8-10].

하이브리드 커패시터의 음극재로서 흑연계 물질은 높은 용량, 안 정적인 전압 및 합리적인 가격으로 인해서 널리 사용되고 있으나 사 이클 안정성 및 초기 충방전 이후 발생하는 비가역 용량 등의 문제 를 개선하기 위하여 많은 연구들이 진행되고 있다[11]. Guo의 연구 에서는 그라파이트의 사이클 안정성을 높이기 위하여 그라파이트 표 면에 polyacrylonitril를 코팅하였으며[12], 다른 연구에서는 흑연계의 표면 코팅 물질로 Al₂O₂, ZrO₂ 등의 금속산화물을 이용하여 전기화 학적 특성을 향상시켰다[13-14]. 금속산화물 계열 중 LiaTi, Op는 스 피넬 구조로써 카본과 비교해 보았을 때, 충방전 시 구조적 변화가 없기 때문에 매우 안정하여 수명특성이 좋으며, 부피변화가 리튬의 삽입/탈리 시 약 10%인데 반하여, LiaTisO12는 부피변화가 1% 정도 로 "zero-strain" 물질로 알려져 있다. 또한 카본 보다 높은 작동전압 을 가지고 있기 때문에 SEI 층을 형성하지 않는다는 장점을 가지고 있기에 충방전 과정 중에 부피팽창이 없다. 그로 인해 불안정한 사 이클 특성을 갖는 물질들의 안정성을 향상시키기 위하여 표면 개질 물질로서 많은 연구가 진행되고 있는 추세이다[11-13,15].

본 연구에서는 전도성이 좋지만 사이클 안정성이 낮은 탄소재 MCMB(Meso carbon micro beads)의 특성을 향상시키기 위하여 높 은 사이클 안정성과 부피팽창이 없는 장점을 갖는 물질인 Li₄Ti₅O₁₂ 를 표면 코팅 물질로 이용하여 core-shell 구조의 MCMB/Li₄Ti₅O₁₂ 합성물을 제조하였다. 합성된 MCMB/Li₄Ti₅O₁₂의 물리적 특성을 분 석하기 위하여 XRD, SEM 등을 측정하였으며 파우치 형의 하이브 리드 커패시터 셀을 제조하여 충방전 테스트, 사이클 테스트, 순환전 압전류테스트, 임피던스 테스트 등의 전기화학적 테스트를 실시하여 하이브리드 커패시터의 전기화학적 특성을 분석하였다.

2.실 험

2-1. Core-shell 구조의 MCMB/Li₄Ti₅O₁₂ 제조

본 연구에서는 Sol-gel 법을 이용하여 MCMB(Meso carbon microbeads, Osaka gas Ltd) 표면에 $Li_4Ti_5O_{12}$ 를 코팅한 core-shell 구조의 MCMB/ $Li_4Ti_5O_{12}$ 합성물을 제조하였다. $Li_4Ti_5O_{12}$ 를 제조하기 위하여 lithium source인 CH₃COOLi(Lithium acetate, Sigma aldrich) 1 g을 에탄을 용액에 녹인 후에 Li : Ti의 화학양론비가 4.2:5가 되도록 titanium source인 TTIP(Titanium isopropoxide, Sigma aldrich)를 천천히 용액에 분산 시킨 후 30분간 sonication 처리를 한 후 12시간 교반하였다. 교 반 후에 12 g의 MCMB를 용액에 첨가한 후에 80 °C의 온도에서 24 시간 동안 교반한 후에 105 °C의 순환건조오븐에 넣고 24시간 건조 하였다. 그 후에 800 °C에서 승온 속도를 5 °C/min으로 설정하여 air 분위기 하에서 6시간 동안 소성을 하여 MCMB/ $Li_4Ti_5O_{12}$ 최종 합성 물을 제조하였다. 제조한 합성물은 결정도, 결정형상과 표면 특성을 알아보기 위하여 XRD, SEM을 측정하여 분석하였다.

2-2. 하이브리드 커패시터 제조 및 전기화학적 특성 분석

Sol-gel법으로 제조한 MCMB/Li₄Ti₅O₁₂ 합성물과 MCMB로 하이 브리드 커패시터의 음극 전극을 제조하였으며, 양극 전극은 Li 기반

Fig. 1. Manufacturing procedures of Electrode.

의 금속산화물 소재인 LiMn₂O₄와 Active carbon fiber(MSP-20)를 사용하였으며 Fig. 1과 같은 공정으로 각각의 전극을 제조하였다. 음 극 전극은 활성탄 : 도전재 : 바인더 = 76 : 17 : 7의 비율로 혼합하여 슬러리를 만든 후, 집전체인 알루미늄 호일에 applicator(YBA-3, Baker applicator)로 코팅하여 제조하였으며, 양극 전극은 활성탄 : 도 전재 : 바인더 = 85 : 10 : 5의 비율로 혼합하여 음극 전극과 같은 방법으로 코팅하여 제조하였다. 음극과 양극 전극의 도전재로는 Super-P(Sigma aldrich)를 사용하였으며, 바인더로는 PTFE(Polytetrafluoroethylene), SBR(Styrene butadiene rubber)을 사용하였다. 유기 전해액은 EC (Ethylene carbonate), DMC(Dimethyl carbonate), EMC(Ethyl-methyl carbonate)가 1:1:1의 부피비로 구성된 용액에 1 M의 LiPF₆(Lithium hexafluorophosphate, Panaxetec) 염이 용해된 것을 사용하였다. 코팅 한 전극은 100 ℃ 오븐에서 12시간 동안 건조시킨 후 150 ℃에서 4000 psi의 압력으로 Hot press(No.4386, CARVER)를 이용하여 일 정한 두께(100 µm)를 갖도록 압착시킨 다음 상온에서 2×2 cm²로 재 단하여 전극을 만들었다. 재단한 음극, 양극의 전극 사이에 분리막 (Cellulose, 삼화전기)을 삽입 후 Ar 분위기의 글러브 박스 내에서 전 해질을 넣어 하이브리드 커패시터 단위 셀을 제조하였다. 제조한 셀은 24시간 동안 에이징시킨 후 전기화학적 특성을 분석하였다.

제조한 하이브리드 커패시터 단위 셀의 전기화학 특성인 충방전 테스트, 사이클 테스트, 누설전류 테스트는 WBCS 3000 Battery Cycler(Won A Tech)를 이용하여 측정하였으며, 순환 전압 전류 테 스트와 임피던스 테스트는 Zive Map MP2(Won A Tech)를 이용하여 측정하였다. 충·방전 테스트는 충전과 방전 시에 5 mA의 전류로 하여 0~2.5 V의 구동전압을 설정하였고, 충전 시 2.5 V에 도달하면 일정 전압모드로 전지에 과 충전을 방지하기 위해 충전과정과 방전과정 사이에 5분 정도의 휴지시간을 두어 급격한 전위변화에 대한 전지의 불안정성을 최소화 하면서 충·방전 테스트를 진행하였다. 순환 전압 전류 테스트는 구동전압을 0~2.5 V로 하고 5, 10, 15, 20 mV/sec의 scan rate로 전극과 전해액의 계면에 주기적인 전압을 가하여 이때 발 생하는 전류 변화를 관찰하였다. 임피던스 테스트는 10 mHz~100 kHz의 주파수 범위에서 측정하였으며 전극의 계면저항 및 전해질의 저항을 관찰하였다.

Korean Chem. Eng. Res., Vol. 52, No. 1, February, 2014

3. 결과 및 고찰

3-1. MCMB/Li₄Ti₅O₁₂ 합성물의 물리적 특성

Sol-gel 법을 이용하여 MCMB 표면에 $Li_4Ti_5O_{12}$ 를 코팅하여 MCMB/ $Li_4Ti_5O_{12}$ 합성물을 제조하였으며 물리적 특성을 알아보기 위하여 XRD 및 SEM을 측정하였다. Fig. 2는 MCMB/ $Li_4Ti_5O_{12}$ 합 성물의 결정구조를 확인하기 위하여 측정한 XRD 분석 결과이다. (111), (311), (400), (511), (440)면의 회절을 통해서 $Li_4Ti_5O_{12}$ 의 합성을 확 인 할 수 있었다. 또한 흑연계가 가지고 있는 (002)면의 회절을 통해 서 MCMB/ $Li_4Ti_5O_{12}$ 의 합성을 확인할 수 있었으며 Fig. 2(a)와 Fig. 2(b)는 $Li_4Ti_5O_{12}$ (JCPDS 82-1617) 피크와 일치하는 결과 값을 보여 주었다[15-17].

Fig. 3은 MCMB/Li₄Ti₅O₁₂ 합성물의 표면 형상을 알아보기 위하여 측정한 SEM 분석 결과이며, MCMB 표면에 80~120 nm 크기의 Li₄Ti₅O₁₂ 입자가 코팅되어 있음을 확인할 수 있었다. 각각의 활물질 전극의 전기 전도도를 측정하기 위하여 표면저항 측정 장치(FPP-400, Dasol ENG)를 이용하여 전극의 표면저항을 측정하였으며, 표면 저항 및 전기전도도 결과를 Table 1에 나타내었다. 결과에서 MCMB의 표면저항이 본 연구에서 사용한 활물질 중 가장 낮게 나왔으며 전기 전도도는 가장 우수한 특성을 나타내었다. 그러나 MCMB/Li₄Ti₅O₁₂

Fig. 2. XRD patterns of (a) MCMB-Li₄Ti₅O₁₂ (b) Li₄Ti₅O₁₂

Fig. 3. SEM images of (a) MCMB/Li₄Ti₅O₁₂ (x7,000), (b) MCMB/Li₄Ti₅O₁₂ (x50,000), (C) MCMB (x7,000), (d) Li₄Ti₅O₁₂ (x20,000).

Korean Chem. Eng. Res., Vol. 52, No. 1, February, 2014

Active materials	Surface Resistance (Ω/sq)	Conductivity (S/cm)
ACF	54	1.85
LiMn ₂ O ₄	350	0.56
Li4Ti5O12	875	0.13
MCMB	20	3.21
MCMB-Li ₄ Ti ₅ O ₁₂	23	2.90

합성 후에는 표면저항이 20 Ω /sq에서 23 Ω /sq으로 약간 증가하였고 그에 따른 전기전도도도 3.12 S/cm에서 2.90 S/cm 감소하였지만 Li₄Ti₅O₁₂의 표면저항이 875 Ω /sq인 것을 감안하였을 때, 전기전도도 의 감소는 비교적 작게 일어났음을 확인할 수 있었다. Naoi 등[16]과 Fang 등[17]의 연구 결과에서는 전기전도성은 낮지만 사이클 안정성 이 우수한 Li₄Ti₅O₁₂와 탄소계 물질과 합성하여 그에 따른 용량 및 사이클 특성을 향상시키는 유사한 결과를 보여주고 있다.

3-2. 하이브리드 커패시터의 전기화학적 특성

하이브리드 커패시터의 전기화학적 성능을 평가하기 위하여 정전 류 충방전 테스트를 사용하여 평가하였으며 양극과 음극의 단위면적 당 전기화학적 특성을 조사하였다. 하이브리드 커패시터는 dV/dt가 일정하므로 정전용량 및 에너지 밀도를 전압-시간 분포에서 (=iΔt/ AΔV) 구할 수 있다. 여기서 C[F/cm²]는 단위면적당 정전용량이며, i[A]는 전류, A[cm²]는 전극물질의 면적이다[18].

제조한 하이브리드 커패시터 단위 셀의 충방전 테스트 결과를 Table 1에 나타내었다. Table 1의 결과에 나타나는 바와 같이 음극으 로는 MCMB, 양극으로 ACF를 사용한 하이브리드 커패시터 단위 셀 의 단위 면적당 용량은 0.02 F/cm²로 가장 낮은 비축전 용량을 나타 내었으며 동일한 양극을 사용하고 음극으론 MCMB/Li₄Ti₅O₁₂ 합성 물을 사용한 하이브리드 커패시터의 경우에는 0.29 F/cm²로 상대적 으로 높은 비축전용량을 나타내었다. 이는 나노 사이즈로 합성된 Li₄Ti₅O₁₂의 높은 비표면적이 전해질과의 접촉 면적을 증가시켜 용 량 특성 등이 향상되었기 때문에 상대적으로 좋은 용량 특성을 나타 내었다[17,19,20]. 음극으로는 MCMB-Li₄Ti₅O₁, 합성물, 양극으로는 LiMn₂O₄ 사용한 하이브리드 커패시터 단위 셀에서의 단위 면적당 용량은 0.41 F/cm²로 MCMB-Li₄Ti₅O₁₂/ACF와 MCMB/Li₄Ti₅O₁₂보 다 높은 비축전 용량을 나타냈다. Hu 등[21]의 연구결과에서 양극과 음극에 Li계 금속산화물을 사용하여 Li4Ti5O12/LiMn2O4와 같은 형 태로 만든 하이브리드 커패시터가 Li4Ti5O12/ACF와 LiMn2O4/ACF 형태의 하이브리드 커패시터 보다 높은 용량을 나타내는 비슷한 연 구 결과를 제시하고 있다.

Fig. 4는 하이브리드 커패시터 셀의 20회 사이클 테스트 결과이다. MCMB-Li₄Ti₅O₁₂/ACF 하이브리드 커패시터 셀은 80%의 사이클 안 정성을 나타내었고, MCMB-Li₄Ti₅O₁₂/LiMn₂O₄ 하이브리드 커패시 터 셀은 거의 100%에 가까운 사이클 안정성을 나타내어 우수한 사 이클 특성을 나타내었다. 이는 MCMB 표면에 부피변화가 없어서 사

Table 2. Specific capacitance of hybrid capacitor

Negative Electrode	Positive Electrode	Capacitance (F/cm ²)
MCMB-Li ₄ Ti ₅ O ₁₂	LiMn ₂ O ₄	0.41
MCMB-Li ₄ Ti ₅ O ₁₂	ACF	0.29
MCMB	ACF	0.02

Fig. 4. Cycle performances of hybrid capacitor using MCMB/Li₄Ti₅O₁₂ as an anode electrode.

Fig. 5. Cyclic voltammogram of hybrid capacitor using ACF as a positive electrode.

이클 안정성이 우수한 물질인 Li₄Ti₅O₁₂를 표면에 코팅함으로써 나 타난 결과이며, Lee 등[19]도 Li₄Ti₅O₁₂의 표면 개질 후 합성물의 사 이클의 안정성이 항상되었다는 비슷한 연구 결과를 제시하였다.

MCMB-Li₄Ti₅O₁₂/ACF 하이브리드 커패시터 셀의 순환 전압 전류 테스트는 0~2.5 V의 전압 범위에서 5, 10, 15, 20 mV/s로 scan rate의 변화를 주면서 측정하였으며 그 결과를 Fig. 5에 나타내었다. Li₄Ti₅O₁₂는 Ti³⁺, Ti⁴⁺의 환원 반응에 의하여 1.45 V와 1.75 V의 영 역에서 환원 산화 피크가 생성된다고 보고된 바 있으며[22], 본 연구 에서는 Li₄Ti₅O₁₂에 의한 한 쌍의 환원 산화 피크를 확인하였으며 위 에서 보고된 피크들보다 큰 2.0, 2.3 V에서 확인할 수 있었다. 또한 scan rate가 변화함에 따라 피크의 위치가 일정한 것으로 보아 가역 적인 산화 환원 반응이 진행되었음을 확인할 수 있었다[23]. MCMB-Li₄Ti₅O₁₂/LiMn₂O₄ 하이브리드 커패시터 셀의 순환 전압 전류 곡선 으로 위와 마찬가지로 0~2.5 V의 전압 범위에서 5, 10, 15, 20 mV/s로 scan rate의 변화를 주면서 측정하였으며, 측정 결과 두 쌍의 산화 환 원 피크가 생성됨을 관찰할 수 있었다. 또한 scan rate가 증가할수록 산화 피크는 오른쪽 방향으로 환원 피크는 왼쪽 방향으로 이동하였

Fig. 6. Cyclic voltammogram of hybrid capacitor using LiMn₂O₄ as a positive electrode.

Fig. 7. Impedances of hybrid capacitor.

으며, 두 쌍의 산화 피크와 환원 피크 각각의 사이가 넓어지는 것을 관찰할 수 있었다. 이는 리튬의 삽입/탈리로 인한 격자상수의 변화로 변형률 값이 변화되었기 때문이라고 추측할 수 있다[24,25].

임피던스 테스트는 10 mHz~100 kHz의 주파수 범위에서 측정하 였으며 Fig. 7에 결과를 나타내었다. MCMB-Li₄Ti₅O₁₂/ACF 하이브 리드 커패시터 단위 셀은 Li₄Ti₅O₁₂/ACF 하이브리드 커패시터 단위 셀보다 보다 반원의 크기가 작은 것으로 보아, Li₄Ti₅O₁₂에 전도성이 좋은 MCMB를 합성함으로써 활물질과 전해질 사이의 전하 전달 저 항이 감소됨을 확인할 수 있었으며, 이를 통해서 MCMB-Li₄Ti₅O₁₂/ ACF 하이브리드 커패시터 단위 셀이 저항 면에서 더 우수한 특성을 보이는 것을 알 수 있었다.

본 연구에서 제조한 하이브리드 커패시터의 에너지밀도(E)와 출 력 밀도(P)를 구하기 위하여 다음과 같은 식을 사용하였다.

$$E = \frac{1}{2}CV^2$$
(1)

$$\mathbf{P} = \frac{\mathbf{E}}{\Delta \mathbf{t}_d} \tag{2}$$

여기서 C는 커패시터의 비축전용량, V는 충방전 전압 범위, Δt,는

Korean Chem. Eng. Res., Vol. 52, No. 1, February, 2014

Table 3. Energy denity and power density of hybrid capacitor

Hybrid Capacitor	Energy Density (Wh/kg)	Power Density (W/kg)
MCMB-Li ₄ Ti ₅ O ₁₂ /ACF	60	634
MCMB-Li ₄ Ti ₅ O ₁₂ /LiMn ₂ O ₄	67	781

방전 시간을 의미한다. 실험결과를 바탕으로 우수한 비축전용량을 나타낸 두 개의 하이브리드 커패시터 단위 셀의 에너지밀도와 출력 밀도를 계산하여 Table 3에 나타내었다. MCMB-Li₄Ti₅O₁₂ 합성물 을 음극으로, LiMn₂O₄ 양극으로 한 하이브리드 커패시터의 에너지 밀도는 67 Wh/kg로 높은 에너지 밀도를 나타내었으며, 출력밀도 또 한 781 W/kg로 우수한 특성을 보였다.

4. 결 론

본 연구에서는 전도성이 좋지만 사이클 안정성이 낮은 탄소재 MCMB(Meso carbon micro beads)의 특성을 향상시키기 위하여 높은 사이클 안정성과 부피팽창이 없는 장점을 갖는 물질인 Li4Ti5O12를 코팅 물질로 이용하여 core-shell 구조의 MCMB/Li₄Ti₅O₁₂ 합성물을 제조하고 물리적 특성을 측정하였다. 제조된 MCMB/Li4Ti5012를 음 극소재로 사용하고, ACF와 LiMn,O₄를 양극소재로 사용하여 하이 브리드 커패시터 셀을 제조하고, 전기화학적 성능을 조사하였다. 양 극으로 ACF를 사용하고, 음극으로 MCMB/Li4Ti5O12 합성물을 사용 한 하이브리드 커패시터는 MCMB를 음극으로 사용한 단위 셀보다 10배 이상의 높은 비축전 용량을 나타내었다. 이는 나노사이즈로 합 성된 Li4Ti5017가 MCMB 표면에 합성되어 비표면적과 사이클 안정 성을 증가시켜 하이브리드 커패시터의 성능을 향상시킨 것으로 생각 된다. MCMB/Li₄Ti₅O₁₂ 합성물을 음극으로, 금속산화물 LiMn₂O₄를 양극으로 사용하여 제조한 단위 셀의 비축전 용량은 0.40 F/cm²으로 양극으로 ACF를 사용하였을 때 보다 우수하였으며, 거의 100%의 우수한 사이클 안정성을 보여주었다, 이 하이브리드 커패시터는 67 Wh/kg의 에너지 밀도를 나타내었으며, 출력밀도 또한 781 W/kg로 우수한 특성을 보였다.

References

- Conway, B. E., "Electrochemical Superconducts : Scientific Fundamentals and Technological Appliaction," *Kluwer Academic*, New York, 105(1999).
- Kandalkar, S. G., Lee, H. M., Seo, S. H., Lee, K. T. and Kim, C. K., "Preraration and Characterization of the Electrodeposited Ni-Co Oxide Thin Films for Electrochemical Capacitors," *Korean J. Chem. Eng.*, 28, 1464-1467(2011).
- Lee, S. W., Park, D. K., Lee, J. K., Ju, J. B. and Shon, T. W., "Discharge Capacitance of Electric Double Layer Capacitor with Electrodes Made of Carbon Nanotubes Directly Deposited on SUS304 Plates," *Korean J. Chem. Eng.*, 18, 371-375(2011).
- Aida, T., Murayama, I., Yamada, K. and Morita, M., "Analyses of Capacity Loss and Improvement of Cycle Performance for a High-voltage Hybrid Electrochemical Capacitor," *J. Electrochem. Soc.*, **154**, 798-804(2007).
- 5. Anderw Burke, "R&D Considerations for the Performance and Application of Electrochemical Capacitors," *Electrochim. Acta*,

53, 1083(2007).

- Kim, I. H. and Kim, K. B., "Electrochemical Characterization of Hydrous Ruthenium Oxide Thin-film Electrodes for Electrochemical Capacitor Applications," *J. Electrochem. Soc.*, **153**, 383 (2006).
- Frackowiak, E. and Beguin, F., "Carbon Materials for the Electrochemical Storage of Energy in Capacitors," *Carbon*, **39**, 937 (2001).
- Zhang, Y., Feng, H., Wu, X., Wang, L., Zhang, A., Xia, T., Dong, H., Li, X. and Zhang, L., "Progress of Electrochemical Capacitor Electrode Materials-a Review," *Int. J. Hydrog. Energy*, 34, 4889-4899(2009).
- Ma, S. B., Nam, K. W., Yoon, W. S., Yang, X. Q., Ahn, K. Y., Oh, K. H. and Kim, K. B., "A Novel Concept of Hybrid Capacitor Based on Manganese Oxide Materials," *Electrochem. Commun.*, 9, 2807(2007).
- Yoon, J. H., Bang, H. J., Prakash, J. and Sun, Y. K., "Comparative Study of Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O₂ Cathode Material Synthesized via Different Synthetic Routes for Asymmetric Electrochemical Capacitor Applications," *Matt. Chem. Phy.*, **110**, 222(2008).
- Jie, W., Hailei, Z., Qian, Y., Chunmei, W., Pengpeng, L. and Qing, X., "Cycling Performance of Low-cost Lithium Ion Batteries with Natural Graphite and LiFePO₄," *J. Power Sources*, **222**, 196-201 (2013).
- Kunkun, G, Qinmin, P. and Shibi, F., "Poly(acrylonitrile) Encapsulated Graphite as Anode Materials for Lithium Ion Batteries," *J. Power Sources*, **111**, 350-356(2002).
- Lee, J. W., Park, S. M. and Kim, H. J., "Enhanced Cycle Ability of LiCoO₂ Coated with Vanadium Oxides," *J. Power Sources*, 188, 583-587(2009).
- Nina, K., Evgeniya, D., Arseny, S. and Vasily, K., "Surface Chemistry Study of LiCoO₂ Coated with Alumina," *Solid State Ion.*, **179**, 1745-1749(2008).
- Shi, Y., Wen, L., Feng, L. and Cheng, H. M., "Nanosized Li₄Ti₅O₁₂/ Graphene Hybrid Materials with Low Polarization for High Rate Lithium Ion Batteries," *J. Power Sources*, **196**, 8610-8617(2011).
- Katsuhiko, N., Shuichi, I., Yusaku, I. and Shiataro, A., "High-rate Nano-crystalline Li₄Ti₅O₁₂ Attached on Carbon Nano-fibers for Hybrid Supercapacitors," *J. Power Sources*, **195**, 6250-6254(2010).
- Fang, W., Cheng, X. Q., Zuo, P. J., Ma, Y. L. and Yin, G., "A Facile Strategy to Prepare Nano-crystalline Li4Ti₅O₁₂/C Anode Material via Polyvinyl Alcohol as Carbon Source for High-rate Rechargeable Li-ion Batteries," *Electrochim. Acta*, **93**, 173-178(2013).
- Yoon, H. J., Lee, C. H. and Lee, J. D., "The Electrochemical Characteristics of Mesopore Carbonfiber for EDLC Electrode," *Korean chem. Eng. Res.*, 29, 10(2011).
- Lee, M. L., Li, Y. H., Liao, S. C., Chen, J. M., Yeh, J. W. and Shih, H. C., "Li₄Ti₅O₁₂-Coated Graphite as Anode materials for Lithium ion Batteries," *Appl. Surf. Sci.*, 258, 5938-5942(2012).
- Lu, M., Tian, Y., Zheng, X., Gao, J. and Huang, B., "Enhanced Performance of Spherical Natural Graphite Coated by Li₄Ti₅O₁₂ as Anode for Lithium-ion Batteries," *J. Power Sources*, **219**, 188-192 (2012).
- Dario, C., Petr, N., Alexander, W. and Rudiger, K., "Hybridization of Electrochemical Capacitors and Rechargeable Batteries: An Experimental Analysis of the Different Possible Approaches Utilizing Activated Carbon, Li₄Ti₅O₁₂ and LiMn₂O₄," *J. Power*

Sources, 196, 10305-10313(2011).

- Yang, J. J., Choi, C. H., Seo, H. B., Kim, H. J. and Park, S. K., "Voltage Characteristics and Capacitance Balancing for Li₄Ti₅O₁₂/ Activated Carbon Hybrid Capacitors," *Electrochim. Acta*, 86, 277-281(2012).
- Xuebu, H., Zhenghua, D., Jishuan, S. and Zhonglai, P., "A High Rate, High Capacity and Long Life (LiMn₂O₄+AC)/Li₄Ti₅O₁₂ Hybrid Battery-supercapacitor," *J. Power Sources*, 187, 635-639

(2009).

- Han, C. H., Hong, Y. S., Hong, H. S. and Kim, K., "Electrochemical Properties of Iodine-containing Lithium Manganese Oxide Spinel," *J. Power Sources*, **111** 176-180(2002).
- Kyung, Y. C. and Kim, K. B., "Investigations into Capacity Fading as a Result of a Jahn-Teller Distortion in 4V LiMn₂O₄ Thin Film Electrodes," *Electrochim. Acta*, 49, 3327-3337(2004).