DOI QR코드

DOI QR Code

Core-shell 구조의 MCMB/Li4Ti5O12 합성물을 사용한 하이브리드 커패시터의 전기화학적 특성

Electrochemical Characteristics of Hybrid Capacitor using Core-shell Structure of MCMB/Li4Ti5O12 Composite

  • 투고 : 2013.09.12
  • 심사 : 2013.12.19
  • 발행 : 2014.02.01

초록

본 연구에서는 낮은 사이클 안정성을 갖는 MCMB의 단점을 향상시키기 위하여 높은 사이클 안정성과 부피팽창이 없는 장점을 갖는 물질인 $Li_4Ti_5O_{12}$를 코팅하여 core-shell 구조의 $MCMB/Li_4Ti_5O_{12}$를 합성하고 $MCMB/Li_4Ti_5O_{12}$를 음극으로, $LiMn_2O_4$, Active carbon fiber를 양극으로 사용하여 단위 셀을 제조하였다. $LiPF_6$ 염과 EC/DMC/EMC 용매를 전해질로 사용하여 제조한 하이브리드 커패시터 단위 셀로 충방전, 사이클, 순환전압전류, 임피던스 테스트를 진행하여 전기화학적 특성을 평가한 결과, MCMB-$Li_4Ti_5O_{12}/LiMn_2O_4$ 전극을 사용한 하이브리드 커패시터가 MCMB 전극의 하이브리드 커패시터 보다 좋은 충/방전 성능을 보였고, 67 Wh/kg, 781 W/kg의 에너지밀도와 출력밀도를 나타내었다.

The MCMB-$Li_4Ti_5O_{12}$ with core-shell structure was prepared by sol-gel process to improve low cycle capability of MCMB in this study. The electrochemical characteristics were investigated for hybrid capacitor using MCMB-$Li_4Ti_5O_{12}$ as the negative electrode and $LiMn_2O_4$, Active carbon fiber as the positive electrode. The electrochemical behaviors of hybrid capacitor using organic electrolytes ($LiPF_6$, EC/DMC/EMC) were characterized by charge/discharge, cyclic voltammetry, cycle and impedance tests. The hybrid capacitor using MCMB-$Li_4Ti_5O_{12}/LiMn_2O_4$ electrodes had better capacitance than MCMB hybrid systems and was able to deliver a specific energy with 67 Wh/kg at a specific power of 781 W/kg.

키워드

참고문헌

  1. Conway, B. E., "Electrochemical Superconducts : Scientific Fundamentals and Technological Appliaction," Kluwer Academic, New York, 105(1999).
  2. Kandalkar, S. G., Lee, H. M., Seo, S. H., Lee, K. T. and Kim, C. K., "Preraration and Characterization of the Electrodeposited Ni- Co Oxide Thin Films for Electrochemical Capacitors," Korean J. Chem. Eng., 28, 1464-1467(2011). https://doi.org/10.1007/s11814-010-0521-z
  3. Lee, S. W., Park, D. K., Lee, J. K., Ju, J. B. and Shon, T. W., "Discharge Capacitance of Electric Double Layer Capacitor with Electrodes Made of Carbon Nanotubes Directly Deposited on SUS304 Plates," Korean J. Chem. Eng., 18, 371-375(2011). https://doi.org/10.1007/BF02699180
  4. Aida, T., Murayama, I., Yamada, K. and Morita, M., "Analyses of Capacity Loss and Improvement of Cycle Performance for a High-voltage Hybrid Electrochemical Capacitor," J. Electrochem. Soc., 154, 798-804(2007).
  5. Anderw Burke, "R&D Considerations for the Performance and Application of Electrochemical Capacitors," Electrochim. Acta, 53, 1083(2007). https://doi.org/10.1016/j.electacta.2007.01.011
  6. Kim, I. H. and Kim, K. B., "Electrochemical Characterization of Hydrous Ruthenium Oxide Thin-film Electrodes for Electrochemical Capacitor Applications," J. Electrochem. Soc., 153, 383 (2006). https://doi.org/10.1149/1.2147406
  7. Frackowiak, E. and Beguin, F., "Carbon Materials for the Electrochemical Storage of Energy in Capacitors," Carbon, 39, 937 (2001). https://doi.org/10.1016/S0008-6223(00)00183-4
  8. Zhang, Y., Feng, H., Wu, X., Wang, L., Zhang, A., Xia, T., Dong, H., Li, X. and Zhang, L., "Progress of Electrochemical Capacitor Electrode Materials-a Review," Int. J. Hydrog. Energy, 34, 4889-4899(2009). https://doi.org/10.1016/j.ijhydene.2009.04.005
  9. Ma, S. B., Nam, K. W., Yoon, W. S., Yang, X. Q., Ahn, K. Y., Oh, K. H. and Kim, K. B., "A Novel Concept of Hybrid Capacitor Based on Manganese Oxide Materials," Electrochem. Commun., 9, 2807(2007). https://doi.org/10.1016/j.elecom.2007.09.015
  10. Yoon, J. H., Bang, H. J., Prakash, J. and Sun, Y. K., "Comparative Study of Li[$Ni_{1/3}Co_{1/3}Mn_{1/3}$]$O_2$ Cathode Material Synthesized via Different Synthetic Routes for Asymmetric Electrochemical Capacitor Applications," Matt. Chem. Phy., 110, 222(2008). https://doi.org/10.1016/j.matchemphys.2008.01.032
  11. Jie, W., Hailei, Z., Qian, Y., Chunmei, W., Pengpeng, L. and Qing, X., "Cycling Performance of Low-cost Lithium Ion Batteries with Natural Graphite and $LiFePO_4$," J. Power Sources, 222, 196-201 (2013). https://doi.org/10.1016/j.jpowsour.2012.08.082
  12. Kunkun, G., Qinmin, P. and Shibi, F., "Poly(acrylonitrile) Encapsulated Graphite as Anode Materials for Lithium Ion Batteries," J. Power Sources, 111, 350-356(2002). https://doi.org/10.1016/S0378-7753(02)00347-6
  13. Lee, J. W., Park, S. M. and Kim, H. J., "Enhanced Cycle Ability of $LiCoO_2$ Coated with Vanadium Oxides," J. Power Sources, 188, 583-587(2009). https://doi.org/10.1016/j.jpowsour.2008.11.124
  14. Nina, K., Evgeniya, D., Arseny, S. and Vasily, K., "Surface Chemistry Study of $LiCoO_2$ Coated with Alumina," Solid State Ion., 179, 1745-1749(2008). https://doi.org/10.1016/j.ssi.2008.02.013
  15. Shi, Y., Wen, L., Feng, L. and Cheng, H. M., "Nanosized $Li_4Ti_5O_{12}$/ Graphene Hybrid Materials with Low Polarization for High Rate Lithium Ion Batteries," J. Power Sources, 196, 8610-8617(2011). https://doi.org/10.1016/j.jpowsour.2011.06.002
  16. Katsuhiko, N., Shuichi, I., Yusaku, I. and Shiataro, A., "High-rate Nano-crystalline $Li_4Ti_5O_{12}$ Attached on Carbon Nano-fibers for Hybrid Supercapacitors," J. Power Sources, 195, 6250-6254(2010). https://doi.org/10.1016/j.jpowsour.2009.12.104
  17. Fang, W., Cheng, X. Q., Zuo, P. J., Ma, Y. L. and Yin, G., "A Facile Strategy to Prepare Nano-crystalline $Li4Ti_5O_{12}$/C Anode Material via Polyvinyl Alcohol as Carbon Source for High-rate Rechargeable Li-ion Batteries," Electrochim. Acta, 93, 173-178(2013). https://doi.org/10.1016/j.electacta.2013.01.112
  18. Yoon, H. J., Lee, C. H. and Lee, J. D., "The Electrochemical Characteristics of Mesopore Carbonfiber for EDLC Electrode," Korean chem. Eng. Res., 29, 10(2011).
  19. Lee, M. L., Li, Y. H., Liao, S. C., Chen, J. M., Yeh, J. W. and Shih, H. C., "$Li_4Ti_5O_{12}$-Coated Graphite as Anode materials for Lithium ion Batteries," Appl. Surf. Sci., 258, 5938-5942(2012). https://doi.org/10.1016/j.apsusc.2011.11.018
  20. Lu, M., Tian, Y., Zheng, X., Gao, J. and Huang, B., "Enhanced Performance of Spherical Natural Graphite Coated by $Li_4Ti_5O_{12}$ as Anode for Lithium-ion Batteries," J. Power Sources, 219, 188-192 (2012). https://doi.org/10.1016/j.jpowsour.2012.07.044
  21. Dario, C., Petr, N., Alexander, W. and Rudiger, K., "Hybridization of Electrochemical Capacitors and Rechargeable Batteries: An Experimental Analysis of the Different Possible Approaches Utilizing Activated Carbon, $Li_4Ti_5O_{12}$ and $LiMn_2O_4$," J. Power Sources, 196, 10305-10313(2011). https://doi.org/10.1016/j.jpowsour.2011.07.032
  22. Yang, J. J., Choi, C. H., Seo, H. B., Kim, H. J. and Park, S. K., "Voltage Characteristics and Capacitance Balancing for $Li_4Ti_5O_{12}$/ Activated Carbon Hybrid Capacitors," Electrochim. Acta, 86, 277-281(2012). https://doi.org/10.1016/j.electacta.2012.02.060
  23. Xuebu, H., Zhenghua, D., Jishuan, S. and Zhonglai, P., "A High Rate, High Capacity and Long Life ($LiMn_2O_4$+AC)/$Li_4Ti_5O_{12}$ Hybrid Battery-supercapacitor," J. Power Sources, 187, 635-639 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.033
  24. Han, C. H., Hong, Y. S., Hong, H. S. and Kim, K., "Electrochemical Properties of Iodine-containing Lithium Manganese Oxide Spinel," J. Power Sources, 111 176-180(2002). https://doi.org/10.1016/S0378-7753(02)00098-8
  25. Kyung, Y. C. and Kim, K. B., "Investigations into Capacity Fading as a Result of a Jahn-Teller Distortion in 4V $LiMn_2O_4$ Thin Film Electrodes," Electrochim. Acta, 49, 3327-3337(2004). https://doi.org/10.1016/j.electacta.2004.01.071

피인용 문헌

  1. CNT를 첨가한 Silicon/Carbon 음극소재의 전기화학적 특성 vol.54, pp.1, 2014, https://doi.org/10.9713/kcer.2016.54.1.16
  2. 하이브리드 커패시터의 열안정성 개선을 위한 LiFePO4 복합양극 소재에 관한 연구 vol.55, pp.2, 2014, https://doi.org/10.9713/kcer.2017.55.2.242