• 제목/요약/키워드: carbon nanosheet

검색결과 13건 처리시간 0.025초

Nitrogen-doped carbon nanosheets from polyurethane foams and removal of Cr(VI)

  • Duan, Jiaqi;Zhang, Baohua;Fan, Huailin;Shen, Wenzhong;Qu, Shijie
    • Carbon letters
    • /
    • 제22권
    • /
    • pp.60-69
    • /
    • 2017
  • Nitrogen-doped carbon nanosheets with a developed porous structure were prepared from polyurethane foams by hydrothermal carbonization following $ZnCl_2$ chemical activation. Scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, solid state $^{13}C$ nuclear magnetic resonance (NMR) spectra and X-ray photoelectron spectroscopy were used to characterize the nitrogen-doped carbon nanosheet structure and composition. The removal of Cr(VI) by the N-doped carbon nanosheets was investigated. The results showed that the maximum removal capacity for chromium of 188 mg/g was found at pH=2.0 with PHC-Z-3. pH had an important effect on Cr(VI) removal and the optimal pH was 2.0. Moreover, amino groups and carboxyl groups in the nitrogen-doped carbon nanosheet played important roles in Cr(VI) removal, and promoted the reduction of Cr(VI) to Cr(III).

부양형 탄소나노튜브 나노시트를 이용한 pH센서의 제작과 보정 (Fabrication and Calibration of pH Sensor Using Suspended CNT Nanosheet)

  • 유효봉;최우석;안태창;허준성;임근배
    • 센서학회지
    • /
    • 제22권3호
    • /
    • pp.207-211
    • /
    • 2013
  • In this research, the pH sensor was developed using CNT nanosheet with Nafion coating for the advanced medical sensor such as a blood gas analyzer. The CNT nanosheet was formed by dielectrophoresis and water-meniscus between cantilever-type electrodes. Then, the process of the heat annealing and the Nafion coating was conducted for reducing contact resistance and giving proton selectivity respectively. We measured the response of the pH sensor as the electrolyte-gated CNT-nanosheet field effect transistor. The sensor showed a linear current ratio in a similar range of the normal blood pH. A calibration method for decreasing of the response variation among sensors has also been introduced. Coefficient of variance of the pH sensor was decreased by applying the calibration method. A linear relation between the calibrated response of the sensors and pH variance was also obtained. Finally, the pH sensor with a high resolution was fabricated and we verify the feasibility of the sensor by applying the calibration method.

Capacitance behaviors of Polyaniline/Graphene Nanosheet Composites Prepared by Aniline Chemical Polymerization

  • Kim, Jieun;Park, Soo-Jin;Kim, Seok
    • Carbon letters
    • /
    • 제14권1호
    • /
    • pp.51-54
    • /
    • 2013
  • In this study, polyaniline (PANI)/graphene nanosheet (GNS) composites were synthesized through chemical oxidation polymerization by changing the weight ratio of aniline monomers. To examine the morphological structure of the composites, scanning electron microscopy and transmission electron microscopy (TEM) were conducted. TEM results revealed that fibril-like PANI with a diameter of 50 nm was homogeneously coated on the surface of the GNS. The electrochemical properties of the composites were studied by cyclic voltammetry in 1 M $H_2SO_4$ electrolyte. Among the prepared samples, the PANI/GNS (having 40 wt% aniline content) showed the highest specific capacitance, 528 $Fg^{-1}$, at 10 $mVs^{-1}$. The improved performance was attributed to the GNS, which provides a large number of active sites and good electrical conductivity. The resulting composites are promising electrode materials for high capacitative supercapacitors.

유도 열플라즈마를 이용한 카본나노시트 합성 (Synthesis of carbon nanosheets using RF thermal plasma)

  • 이승용;고상민;구상만;황광택;한규성;김진호
    • 한국결정성장학회지
    • /
    • 제24권5호
    • /
    • pp.207-212
    • /
    • 2014
  • 2차원 흑연구조를 갖는 카본나노시트는 큰 비표면적과 우수한 전기적, 화학적 및 기계적 물성으로 인하여 미래소재로 각광받고 있다. 경제적이고 쉬운 카본나노시트의 양산공정개발을 위해 본 연구에서는 메테인($CH_4$)과 프로페인($C_3H_8$) 가스를 이용한 유도 열플라즈마 공정을 통해 기상 합성하여 카본나노시트 분말을 합성하였다. 유도 열플라즈마를 이용한 카본나노시트 합성은 촉매나 증착공정 없이 진행되었으며, 합성된 카본나노시트의 물성을 TEM, Raman, XRD, BET로 분석하였다. 메테인과 프로페인으로부터 합성된 카본 나노시트는 각각 5~6개의 그래핀 층과 15~16개의 그래핀 층으로 이루어진 분말로 합성되었으며 분말의 크기는 약 100 nm임을 확인할 수 있었다.

Electrical and Mechanical Properties of Graphite Nanosheet/Carbon Nanotubes-filled Epoxy Nanocomposites

  • Kim, Ki-Seok;Choi, Kyeong-Eun;Park, Soo-Jin
    • Carbon letters
    • /
    • 제10권4호
    • /
    • pp.335-338
    • /
    • 2009
  • In this work, the effect of co-carbon fillers on the electrical and mechanical properties of epoxy nanocomposites was investigated. The graphite nanosheets (GNs) and multi-walled carbon nanotubes (MWNTs) were used as co-carbon fillers. The results showed that the electrical conductivity of the epoxy nanocomposites showed a considerable increase upon an addition of MWNTs when GNs were fixed at 2 wt.%. This indicated that low content GNs formed the bulk conductive network and then MWNTs added were intercalated between the GN layers, resulted in the formation of additional conductive pathway. Furthermore, the flexural strength of the epoxy nanocomposites was enhanced with increasing the MWNT content. It was probably attributed to the flexible MWNTs compared with rigid GNs, resulted in the enhancement of the mechanical properties.

그래핀 및 그래핀 기반 나노복합체의 에너지저장소자용 전극 특성 (Electrode Properties of Graphene and Graphene-Based Nanocomposites for Energy Storage Devices)

  • 김광만;이영기;김상욱
    • Korean Chemical Engineering Research
    • /
    • 제48권3호
    • /
    • pp.292-299
    • /
    • 2010
  • 그래핀(graphene)은 $sp^2$ 탄소원자들이 벌집 격자를 이룬 형태의 2차원 나노시트를 의미하며, 높은 비표면적(이론치 $2600m^2\;g^{-1}$)과 우수한 전기전도도(전형치 $8{\times}10^5S\;cm^{-1}$) 및 기계적 강도로 인해 리튬이온전지의 음전극 활물질 및 초고용량 커패시터의 전극 활물질로서 사용 가능성이 높아지고 있다. 본 총설에서는 현재까지 알려진 그래핀 나노시트와 그래핀을 기반으로 하는 나노복합체의 제조법을 소개하고, 이를 리튬이온전지와 초고용량 커패시터의 전극소재로 적용하였을 때의 특성을 그 나노구조적 관점과 연관하여 논의하였다.

Waste coffee grounds-derived nanoporous carbon nanosheets for supercapacitors

  • Park, Min Hong;Yun, Young Soo;Cho, Se Youn;Kim, Na Rae;Jin, Hyoung-Joon
    • Carbon letters
    • /
    • 제19권
    • /
    • pp.66-71
    • /
    • 2016
  • The development of nanostructured functional materials derived from biomass and/or waste is of growing importance for creating sustainable energy-storage systems. In this study, nanoporous carbonaceous materials containing numerous heteroatoms were fabricated from waste coffee grounds using a top-down process via simple heating with KOH. The nanoporous carbon nanosheets exhibited notable material properties such as high specific surface area (1960.1 m2 g−1), numerous redox-active heteroatoms (16.1 at% oxygen, 2.7 at% nitrogen, and 1.6 at% sulfur), and high aspect ratios (>100). These unique properties led to good electrochemical performance as supercapacitor electrodes. A specific capacitance of ~438.5 F g−1 was achieved at a scan rate of 2 mV s−1, and a capacitance of 176 F g−1 was maintained at a fast scan rate of 100 mV s−1. Furthermore, cyclic stability was achieved for over 2000 cycles.

3D Hierarchical Heterostructure of TiO2 Nanorod/Carbon Layer/NiMn-Layered Double Hydroxide Nanosheet

  • Zhao, Wei;Jung, Hyunsung
    • 한국표면공학회지
    • /
    • 제51권6호
    • /
    • pp.365-371
    • /
    • 2018
  • 1D core-shell nanostructures have attracted great attention due to their enhanced physical and chemical properties. Specifically, oriented single-crystalline $TiO_2$ nanorods or nanowires on a transparent conductive substrate would be more desirable as the building core backbone. However, a facile approach to produce such structure-based hybrids is highly demanded. In this study, a three-step hydrothermal method was developed to grow NiMn-layered double hydroxide-decorated $TiO_2$/carbon core-shell nanorod arrays on transparent conductive fluorine-doped tin oxide (FTO) substrates. XRD, SEM, TEM, XPS and Raman were used to analyze the obtained samples. The in-situ fabricated hybrid nanostructured materials are expected to be applicable for photoelectrode working in water splitting.

Novel Synthesis and Nanocharacterization of Graphene and Related 2D Nanomaterials Formed by Surface Segregation

  • Fujita, Daisuke
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.60-60
    • /
    • 2015
  • Nanosheets of graphene and related 2D materials have attracted much attention due to excellent physical, chemical and mechanical properties. Single-layer graphene (SLG) was first synthesized by Blakely et al in 1974 [1]. Following his achievements, we initiated the growth and characterization of graphene and h-BN on metal substrates using surface segregation and precipitation in 1980s [2,3]. There are three important steps for nanosheet growth; surface segregation of dopants, surface reaction for monolayer phase, and subsequent 3-D growth (surface precipitation). Surface phase transition was clearly demonstrated on C-doped Ni(111) by in situ XPS at elevated temperatures [4]. The growth mode was clarified by inelastic background analysis [5]. The surface segregation approach has been applied to C-doped Pt(111) and Pd(111), and controllable growth of SLG has been demonstrated successfully [6]. Recently we proposed a promising method for producing SLG fully covering an entire substrate using Ni films deposited on graphite substrates [7]. A universal method for layer counting has been proposed [8]. In this paper, we will focus on the effect of competitive surface-site occupation between carbon and other surface-active impurities on the graphene growth. It is known that S is a typical impurity of metals and the most surface-active element. The surface sites shall be occupied by S through surface segregation. In the case of Ni(110), it is confirmed by AES and STM that the available surface sites is nearly occupied by S with a centered $2{\times}2$ arrangement. When Ni(110) is doped with C, surface segregation of C may be interfered by surface active elements like S. In this case, nanoscopic characterization has discovered a preferred directional growth of SLG, exhibiting a square-like shape (Fig. 1). Also the detailed characterization methodologies for graphene and h-BN nanosheets, including AFM, STM, KPFM, AES, HIM and XPS shall be discussed.

  • PDF

연료전지 전극촉매용 팔라듐 나노입자 형상 제어 및 산소환원반응 성능 평가 (Preparation of Shape-Controlled Palladium Nanoparticles for Electrocatalysts and Their Performance Evaluation for Oxygen Reduction Reaction)

  • 김경희;이정돈;이효준;박석희;임성대;정남기;박구곤
    • 한국수소및신에너지학회논문집
    • /
    • 제29권5호
    • /
    • pp.450-457
    • /
    • 2018
  • To design the practical core-shell electrocatalysts, combination of core and shell materials is important to meet catalytic activity and durability target. In general, Pd is considered as a good core material due to its best activity caused by strain/ligand effect. Preparing Pd nanoparticles can be a starting point in fabricating core-shell type electrocatalysts, much simplified Pd preparing process is suggested by using carbon monoxide (CO) as a reducing agent and/or capping agent. The solvent composition and reaction temperature can control to nanosheet, tetrahedron, and sphere without using additional stabilizer. Among them, Pd nanosheet which has mainly (111) plane showed about 3 times higher electrocatalytic activity for oxygen reduction reaction (ORR) to the spherical Pd nanoparticles. The enhanced ORR activity of Pd nanosheets can be attributed to the exposure of Pd (111) surface and the high electrochemical surface area. Therefore, we demonstrated that the shape of Pd nanomaterials is easily controlled via a facile reduction method using CO, and (111) plane-oriented Pd nanosheets can be a promising ORR catalysts and core material for polymer electrolyte fuel cells (PEFCs).