Browse > Article
http://dx.doi.org/10.5714/CL.2016.19.066

Waste coffee grounds-derived nanoporous carbon nanosheets for supercapacitors  

Park, Min Hong (Department of Polymer Science and Engineering, Inha University)
Yun, Young Soo (Department of Chemical Engineering, Kangwon National University)
Cho, Se Youn (Department of Polymer Science and Engineering, Inha University)
Kim, Na Rae (Department of Polymer Science and Engineering, Inha University)
Jin, Hyoung-Joon (Department of Polymer Science and Engineering, Inha University)
Publication Information
Carbon letters / v.19, no., 2016 , pp. 66-71 More about this Journal
Abstract
The development of nanostructured functional materials derived from biomass and/or waste is of growing importance for creating sustainable energy-storage systems. In this study, nanoporous carbonaceous materials containing numerous heteroatoms were fabricated from waste coffee grounds using a top-down process via simple heating with KOH. The nanoporous carbon nanosheets exhibited notable material properties such as high specific surface area (1960.1 m2 g−1), numerous redox-active heteroatoms (16.1 at% oxygen, 2.7 at% nitrogen, and 1.6 at% sulfur), and high aspect ratios (>100). These unique properties led to good electrochemical performance as supercapacitor electrodes. A specific capacitance of ~438.5 F g−1 was achieved at a scan rate of 2 mV s−1, and a capacitance of 176 F g−1 was maintained at a fast scan rate of 100 mV s−1. Furthermore, cyclic stability was achieved for over 2000 cycles.
Keywords
waste coffee grounds; supercapacitor; pyrolysis; carbon nanosheet; nanoporous carbon;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS. Carbon-based supercapacitors produced by activation of graphene. Science, 332, 1537 (2011). http://dx.doi.org/10.1126/science.1200770.   DOI
2 Yun YS, Cho SY, Shim J, Kim BH, Chang SJ, Baek SJ, Huh YS, Tak Y, Park YW, Park S, Jin HJ. Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv Mater, 25, 1993 (2013). http://dx.doi.org/10.1002/adma.201204692.   DOI
3 Yun YS, Cho SY, Kim H, Jin HJ, Kang K. Ultra-thin hollow carbon nanospheres for pseudocapacitive sodium-ion storage. ChemElectroChem, 2, 359 (2015). http://dx.doi.org/10.1002/celc.201402359.   DOI
4 Jenkins RW, Stageman NE, Fortune CM, Chuck CJ. Effect of the type of bean, processing, and geographical location on the biodiesel produced from waste coffee grounds. Energy Fuels, 28, 1166(2014). http://dx.doi.org/10.1021/ef4022976.   DOI
5 Silva MA, Nebra SA, Silva MMJ, Sanchez CG. The use of biomass residues in the Brazilian soluble coffee industry. Biomass Bioenergy, 14, 457 (1998). http://dx.doi.org/10.1016/S0961-9534(97)10034-4.   DOI
6 Rodríguez-Reinoso F, Molina-Sabio M. Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview. Carbon, 30, 1111 (1992). http://dx.doi.org/10.1016/0008-6223(92)90143-K.   DOI
7 Rufford TE, Hulicova-Jurcakova D, Zhu Z, Lu GQ. Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors. Electrochem Commun, 10, 1594 (2008). http://dx.doi.org/10.1016/j.elecom.2008.08.022.   DOI
8 Rufford TE, Hulicova-Jurcakova D, Fiset E, Zhu Z, Lu GQ. Double-layer capacitance of waste coffee ground activated carbons in an organic electrolyte. Electrochem Commun, 11, 974 (2009). http://dx.doi.org/10.1016/j.elecom.2009.02.038.   DOI
9 Kante K, Nieto-Delgado C, Rangel-Mendez JR, Bandosz TJ. Spent coffee-based activated carbon: specific surface features and their importance for H2S separation process. J Hazard Mater, 201-202, 141 (2012). http://dx.doi.org/10.1016/j.jhazmat.2011.11.053.   DOI
10 Yun YS, Kim DH, Hong SJ, Park MH, Park YW, Kim BH, Jin HJ, Kang, K. Microporous carbon nanosheets with redox-active heteroatoms for pseudocapacitive charge storage. Nanoscale, 7, 15051(2015). http://dx.doi.org/10.1039/C5NR04231C.   DOI
11 Sanchez-Silva L, López-González D, Villaseñor J, Sánchez P, Valverde JL. Thermogravimetric–mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresour Technol, 109, 163 (2012). http://dx.doi.org/10.1016/j.biortech.2012.01.001.   DOI
12 Wang J, Kaskel S. KOH activation of carbon-based materials for energy storage. J Mater Chem, 22, 23710 (2012). http://dx.doi.org/10.1039/C2JM34066F.   DOI
13 Choi YK, Park SJ. Hydrogen storage capacity of highly porous carbons synthesized from biomass-derived aerogels. Carbon Lett, 16, 127 (2015). http://dx.doi.org/10.5714/CL.2015.16.2.127.   DOI
14 Yun YS, Park MH, Hong SJ, Lee ME, Park YW, Jin HJ. Hierarchically porous carbon nanosheets from waste coffee grounds for supercapacitors. ACS Appl Mater Interfaces, 7, 3684 (2015). http://dx.doi.org/10.1021/am5081919.   DOI
15 Ganguly A, Sharma S, Papakonstantinou P, Hamilton J. Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J Phys Chem C, 115, 17009(2011). http://dx.doi.org/10.1021/jp203741y.   DOI
16 Yun YS, Im C, Park HH, Hwang I, Tak Y, Jin HJ. Hierarchically porous carbon nanofibers containing numerous heteroatoms for supercapacitors. J Power Sources, 234, 285 (2013). http://dx.doi.org/10.1016/j.jpowsour.2013.01.169.   DOI
17 Zhao X, Zhang Q, Chen CM, Zhang B, Reiche S, Wang A, Zhang T, Schlögl R, Su DS. Aromatic sulfide, sulfoxide, and sulfone mediated mesoporous carbon monolith for use in supercapacitor. Nano Energy, 1, 624 (2012). http://dx.doi.org/10.1016/j.nanoen.2012.04.003.   DOI
18 Yun YS, Le VD, Kim H, Chang SJ, Baek SJ, Park S, Kim BH, Kim YH, Kang K, Jin HJ. Effects of sulfur doping on graphene-based nanosheets for use as anode materials in lithium-ion batteries. J Power Sources, 262, 79 (2014). http://dx.doi.org/10.1016/j.jpowsour.2014.03.084.   DOI
19 Andreas HA, Conway BE. Examination of the double-layer capacitance of an high specific-area C-cloth electrode as titrated from acidic to alkaline pHs. Electrochim Acta, 51, 6510 (2006). http://dx.doi.org/10.1016/j.electacta.2006.04.045.   DOI
20 Hulicova-Jurcakova D, Kodama M, Shiraishi S, Hatori H, Zhu ZH, Lu GQ. Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv Funct Mater, 19, 1800 (2009). http://dx.doi.org/10.1002/adfm.200801100.   DOI
21 Aricò AS, Bruce P, Scrosati B, Tarascon JM, van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nat mater, 4, 366 (2005). http://dx.doi.org/10.1038/nmat1368.   DOI
22 Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat mater, 7, 845 (2008). http://dx.doi.org/10.1038/nmat2297.   DOI
23 Liu C, Li F, Ma LP, Cheng HM. Advanced materials for energy storage. Adv Mater, 22, E28 (2010). http://dx.doi.org/10.1002/adma.200903328.   DOI
24 Zhang LL, Zhao XS. Carbon-based materials as supercapacitor electrodes. Chem Soc Rev, 38, 2520 (2009). http://dx.doi.org/10.1039/B813846J.   DOI