Browse > Article
http://dx.doi.org/10.5714/CL.2012.14.1.051

Capacitance behaviors of Polyaniline/Graphene Nanosheet Composites Prepared by Aniline Chemical Polymerization  

Kim, Jieun (Department of Chemical and Biochemical Engineering, Pusan National University)
Park, Soo-Jin (Department of Chemistry, Inha University)
Kim, Seok (Department of Chemical and Biochemical Engineering, Pusan National University)
Publication Information
Carbon letters / v.14, no.1, 2013 , pp. 51-54 More about this Journal
Abstract
In this study, polyaniline (PANI)/graphene nanosheet (GNS) composites were synthesized through chemical oxidation polymerization by changing the weight ratio of aniline monomers. To examine the morphological structure of the composites, scanning electron microscopy and transmission electron microscopy (TEM) were conducted. TEM results revealed that fibril-like PANI with a diameter of 50 nm was homogeneously coated on the surface of the GNS. The electrochemical properties of the composites were studied by cyclic voltammetry in 1 M $H_2SO_4$ electrolyte. Among the prepared samples, the PANI/GNS (having 40 wt% aniline content) showed the highest specific capacitance, 528 $Fg^{-1}$, at 10 $mVs^{-1}$. The improved performance was attributed to the GNS, which provides a large number of active sites and good electrical conductivity. The resulting composites are promising electrode materials for high capacitative supercapacitors.
Keywords
capacitance behaviors; polyaniline; graphene; chemical polymerization;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Wang X, Bai H, Yao Z, Liu A, Shi G. Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films. J Mater Chem, 20, 9032 (2010). http://dx.doi.org/10.1039/C0JM01852J.   DOI   ScienceOn
2 Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene. Rev Mod Phys, 81, 109 (2009). http://dx.doi.org/10.1103/RevModPhys.81.109.   DOI
3 Park SE, Park SJ, Kim S, Preparation and capacitance behaviors of cobalt oxide/graphene composites, Carbon Lett, 13, 130 (2012). http://dx.doi.org/10.5714/CL.2012.13.2.130.   과학기술학회마을   DOI   ScienceOn
4 Zhang LL, Zhou R, Zhao XS. Graphene-based materials as supercapacitor electrodes. J Mater Chem, 20, 5983 (2010). http://dx.doi.org/10.1039/C000417K.   DOI   ScienceOn
5 Radoicic M, Saponjic Z, Nedeljkovic J, Ciric-Marjanovic G, Stejskal J. Self-assembled polyaniline nanotubes and nanoribbons/ titanium dioxide nanocomposites. Synth Met, 160, 1325 (2010). http://dx.doi.org/10.1016/j.synthmet.2010.04.010.   DOI   ScienceOn
6 Rahy A, Yang DJ. Synthesis of highly conductive polyaniline nanofibers. Mater Lett, 62, 4311 (2008). http://dx.doi.org/http://dx.doi.org/10.1016/j.matlet.2008.06.057.   DOI   ScienceOn
7 Misoon O, Seok K. Effect of dodecyl benzene sulfonic acid on the preparation of polyaniline/activated carbon composites by in situ emulsion polymerization. Electrochim Acta, 59, 196 (2012). http://dx.doi.org/http://dx.doi.org/10.1016/j.electacta.2011.10.058.   DOI   ScienceOn
8 Yan Y, Cheng Q, Wang G, Li C. Growth of polyaniline nanowhiskers on mesoporous carbon for supercapacitor application. J Power Sources, 196, 7835 (2011). http://dx.doi.org/http://dx.doi.org/10.1016/j.jpowsour.2011.03.088.   DOI   ScienceOn
9 Park DY, Lim YS, Kim MS, Performance of expanded graphite as anode materials for high power Li-ion secondary batteries, Carbon Lett, 11, 343 (2010). http://dx.doi.org/10.5714/CL.2010.11.4.343.   과학기술학회마을   DOI   ScienceOn
10 Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 80, 1339 (1958). http://dx.doi.org/10.1021/ja01539a017.   DOI
11 Liang Y, Wu D, Feng X, Mullen K. Dispersion of graphene sheets in organic solvent supported by ionic interactions. Adv Mater, 21, 1679 (2009). http://dx.doi.org/10.1002/adma.200803160.   DOI   ScienceOn
12 Li J, Xie H, Li Y, Liu J, Li Z. Electrochemical properties of graphene nanosheets/polyaniline nanofibers composites as electrode for supercapacitors. J Power Sources, 196, 10775 (2011). http://dx.doi.org/10.1016/j.jpowsour.2011.08.105.   DOI   ScienceOn
13 Li G, Jiang L, Peng H. One-dimensional polyaniline nanostructures with controllable surfaces and diameters using vanadic acid as the oxidant. Macromolecules, 40, 7890 (2007). http://dx.doi.org/10.1021/ma070650o.   DOI   ScienceOn
14 Yan J, Wei T, Shao B, Fan Z, Qian W, Zhang M, Wei F. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon, 48, 487 (2010). http://dx.doi.org/http://dx.doi.org/10.1016/j.carbon.2009.09.066.   DOI   ScienceOn
15 Wei Z, Zhang L, Yu M, Yang Y, Wan M. Self-assembling sub-micrometer-sized tube junctions and dendrites of conducting polymers. Adv Mater, 15, 1382 (2003). http://dx.doi.org/10.1002/adma.200305048.   DOI   ScienceOn
16 Li Y, Peng H, Li G, Chen K. Synthesis and electrochemical performance of sandwich-like polyaniline/graphene composite nanosheets. Eur Polym J, 48, 1406 (2012). http://dx.doi.org/http://dx.doi.org/10.1016/j.eurpolymj.2012.05.014.   DOI   ScienceOn