• Title/Summary/Keyword: carbon dioxide$CO_2$ absorbent

Search Result 62, Processing Time 0.026 seconds

Substituent Effect in the Reaction of Carbon Dioxide with Amine-Based Absorbent (치환기 특성에 따른 아민흡수제와 CO2의 반응특성 평가)

  • Shim, Jae-Goo;Lee, Junghyun;Jung, Jin-Kyu;Kwak, No-Sang
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.297-303
    • /
    • 2020
  • The reaction of carbon dioxide with the amine-based absorbents which have various substituents in the molecule was described. In the case of MEA which is a representative primary amine, the absorption reaction was proceeded very fast while the regeneration reaction was took place slowly due to the strong bond strength between the absorbent and carbon dioxide. The more substituents on N atom of the absorbent, the slower the absorption reaction between carbon dioxide and the absorbent, which in turn causes faster the regeneration rate from the reaction intermediate, carbamate.

Comparison of Carbon Dioxide Absorption in Aqueous MEA, DEA, TEA, and AMP Solutions

  • Kim, Young Eun;Lim, Jin Ah;Jeong, Soon Kwan;Yoon, Yeo Il;Bae, Shin Tae;Nam, Sung Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.783-787
    • /
    • 2013
  • The separation and capture process of carbon dioxide from power plants is garnering interest as a method to reduce greenhouse gas emissions. In this study, aqueous alkanolamine solutions were studied as absorbents for $CO_2$ capture. The solubility of $CO_2$ in aqueous alkanolamine solutions was investigated with a continuous stirred reactor at 313, 333 and 353 K. Also, the heat of absorption ($-{\Delta}H_{abs}$) between the absorbent and $CO_2$ molecules was measured with a differential reaction calorimeter (DRC) at 298 K. The solubility and heat of absorption were determined at slightly higher than atmospheric pressure. The enthalpies of $CO_2$ absorption in monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), and 2-amino-2-methyl-1-propanol (AMP) were 88.91, 70.44, 44.72, and 63.95, respectively. This investigation showed that the heat of absorption is directly related to the quantity of heat for absorbent regeneration, and is dependent on amine type and $CO_2$ loading.

Low Concentration CO2 Absorption Performance of Aqueous Alkanolamine Solutions (알카놀아민 수용액을 이용한 저농도 CO2 흡수 특성)

  • Park, IL-Gun;Hong, Min-Sun;Kim, Beom-Seok;Kim, Heung-Lea
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.3
    • /
    • pp.185-191
    • /
    • 2014
  • In this paper, absorption and reaction characteristics of low $CO_2$ and alkanolamines were investigated. As MEA concentrations increase 1, 2 and 3 wt%, $CO_2$ loadings decrease 0.34 mol-$CO_2/mol$-absorbent, 0.32 mol-$CO_2/mol$-absorbent and 0.3 mol-$CO_2/mol$-absorbent, respectively. Also, $CO_2$ loadings decrease from 0.32 mol-$CO_2/mol$-absorbent, 0.30 mol-$CO_2/mol$-absorbent and 0.28 mol-$CO_2/mol$-absorbent as AMP concentrations increase 1, 2 and 3 wt%. Experimental results with blending solutions show that $CO_2$ loading was the highest, 0.52 mol-$CO_2/mol$-absorbent, when 0.5 wt% MEA and 0.5 wt% AMP were blended.

Development and Evaluation of a Carbon Dioxide Diffusive Sampling Method using Barium Hydroxide (수산화바륨을 이용한 이산화탄소 확산측정법의 개발 및 평가)

  • Yim, Bongbeen
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.56-63
    • /
    • 2013
  • This study was aimed at developing and evaluating a diffusive sampling method using a barium hydroxide solution as an absorbent for measuring carbon dioxide ($CO_2$) in ambient air. The collected $CO_2$ concentration was calculated by the change of conductivity resulted in the reaction of $CO_3{^{2-}}$ and $Ba^{2+}$ in aqueous solution. The sampling rate for the diffusive sampler was determined 0.218 mL/min, as obtained from the slope of the linear correlation between the $CO_2$ mass collected by the diffusive sampler and the time-weighted $CO_2$ concentration with the active sampling method. The unexposed blank sampler sealed in aluminium foil-polyethylene laminated packets has remained stable during at least one-month storage period. A good correlation was observed between the diffusive sampler and active sampler with a coefficient of determination of 0.956. This diffusive sampler would be suitable for the indoor $CO_2$ concentration monitoring.

Carbon dioxide absorption characteristics according to amine mixtures with different order (급수가 다른 아민 혼합에 따른 이산화탄소 흡수 특성)

  • Choi, Soo-Hyun;You, Jong-Kyun;Park, Ki-Tae;Baek, Il-Hyun;Park, So-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4635-4642
    • /
    • 2013
  • The advanced absorbent that used amine mixture with different order were developed to separate carbon dioxide emitted from fossil fuel power plant. The carbon dioxide absorption capacity for mixtures with different amine(primary, secondary and tertiary) were investigated according to $CO_2$ partial pressure. The carbon dioxide absorption capacity at the same pressure is ordered as 3DMA1P 30wt%>3DMA1P 27wt%+MEA 3wt%>3DMA1P 27wt%+DEA 3wt%. The result indicates that mixing tertiary amine with primary amine yields more efficient carbon dioxide absorbent than mixing tertiary with secondary amine does. Finally, the predicted semi-empirical gas-liquid equilibrium model fitted with experimental results.

Absorption Characteristics of Aqueous Sodium Glycinate Solution with Carbon Dioxide and Its Mechanistic Analysis (Sodium Glycinate 수용액의 CO$_2$ 흡수특성 및 반응 메커니즘 해석)

  • Shim, Jae-Goo;Kim, Jun-Han;Jang, Kyung-Ryong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.4
    • /
    • pp.430-438
    • /
    • 2008
  • The experiments for separation and recovery of CO$_2$ were conducted by aqueous sodium glycinate solution, which is one of the amino acid salts, as an absorbent of CO$_2$ in this study. Absorption capacities of aqueous MEA and sodium glycinate solution according to partial pressure of CO$_2$ were evaluated by vapor-liquid equilibrium tests of 20 wt% and 30 wt% above-mentioned absorbents, respectively. In addition, the pilot scale(2 t-CO$_2$/day) experiments based on prior results were carried out. As a result, CO$_2$ removal efficiency of aqueous sodium glycinate solution was lower than that of aqueous MEA solution. This phenomenon means that CO$_2$ removal efficiency of aqueous sodium glycinate solution mainly depends on its molecular structure. Consequently, the first application of certain amino acid salt, as an absorbent of CO$_2$, to pilot plant of 2 t-CO$_2$/day scale was carried out in our country.

The Operational Characteristics of CO2 5 ton/day Absorptive Separation Pilot Plant (이산화탄소 5 ton/day 흡수분리 Pilot Plant 운전 특성)

  • O, Min-Gyu;Park, So-Jin;Han, Keun-Hee;Lee, Jong-Seop;Min, Byoung-Moo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.128-134
    • /
    • 2012
  • The pilot scale experiments can handle the flue gas up to 1,000 $Nm^3/hr$ for separation of carbon dioxide included in real flue gas at coal-fired power plant. The operational characteristics was analyzed with the main experimental variables such as flue gas flow rate, absorbent circulation rate using chemical absorbents mono-ethanolamine( MEA) and 2-amino-2-methyl-1-propanol(AMP). The more flue gas flow rate decreased in 100 $m^3/hr$ in the MEA 20 wt% experiments, the more carbon dioxide removal efficiency was increased 6.7% on average. Carbon dioxide removal efficiency was increased approximately 2.8% according to raise of the 1,000 kg/hr absorbent circulation rate. It also was more than 90% at $110^{\circ}C$ of re-boiler temperature. Carbon dioxide removal efficiency of the MEA was higher than that of the AMP. In the MEA(20 wt%) experiment, carbon dioxide removal efficiency(85.5%) was 10% higher than result(75.5%) of ASPEN plus simulation.

Study of continuous regeneration of carbon dioxide sorbent using amino acid salt (아미노산염을 이용한 이산화탄소 흡수제 연속 재생에 관한 연구)

  • Choi, Jin-Sik;Kim, Jae Gang;Lee, Jun Hyung;Chu, Yeon Jin;Lee, Ju-Yeol;Park, Byung Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.947-953
    • /
    • 2017
  • In this study, the regeneration efficiency of the amino acid salt absorbent which can be applied to carbon dioxide absorption / regeneration process was confirmed. The regeneration efficiency has a great influence on the economical judgment of the process. so, continuous regeneration experiment was conducted to establish economical process. The amino acid salts used in the experiments are Potassium L-lysinate and Potassium L-alaninate. Each amino acid and potassium hydroxide(KOH) were mixed at a 1: 2 molar ratio. In order to confirm the regeneration efficiency of the absorbent, carbon dioxide was absorbed in the two materials, and the carbon dioxide desorption experiment was carried out by heating. The initial reaction rate was L-alanine was faster. Over time, L-lysine, desorption higher concentrations of carbon dioxide. L-lysine showed higher regeneration efficiency than L-alanine, (L-alanine 47.26% and L-lysine 62.11%). As a result of the continuous regeneration experiment using the L-lysine having good absorption and regeneration efficiency, it was confirmed that the regeneration efficiency decreases as the number of regeneration increases.

Preparation of Honeycomb Carbon Dioxide Adsorbent Impregnated $K_2CO_3$ and Its Characterization ($K_2CO_3$를 담지시킨 고체 허니컴 이산화탄소 흡수제의 제조 및 이의 특성 평가)

  • Lee, Dong-Chul;Kim, Jin-Bae;You, Yoon-Jong
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.624-629
    • /
    • 2012
  • To capture and recover carbon dioxide ($CO_2$), we impregnated honeycomb made of ceramic paper with $K_2CO_3$ and its absorption characteristics of $CO_2$ were investigated. The absorption amount of $CO_2$ on the honeycomb absorbent impregnated with $K_2CO_3$ was 13.8 wt% at a constant temperature ($70^{\circ}C$) and relative humidity (66%) condition. Because the absorption amount of $CO_2$ achieved almost the same loading ratio of $K_2CO_3$ (17.6 wt%), the absorption reaction of $CO_2$ by $K_2CO_3$ on the honeycomb absorbent seems to be going smoothly. In addition, $CO_2$ absorption breakthrough characteristics of the honeycomb absorbent were analyzed at the temperature range of $50{\sim}80^{\circ}C$, and the water vapor was fed to an absorption column before the feeding of $CO_2$ or simultaneously with $CO_2$. As a result, the absorption capacity of $CO_2$ was more enhanced using the water vapor supplying before $CO_2$ than that of simultaneous supplying. It was confirmed by temperature programmed desorption analysis that the $KHCO_3$ produced by the absorption reaction of $K_2CO_3$ and $CO_2$ is regenerated by the desorption of $CO_2$ at a temperature of about $128^{\circ}C$.

Post-combustion CO2 capture with potassium L-lysine (Potassium L-lysine을 이용한 연소 후 이산화탄소 포집)

  • Lim, Jin Ah;Yoon, Yeo Il;Nam, Sung Chan;Jeong, Soon Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4627-4634
    • /
    • 2013
  • Carbon dioxide is one of the main causes of global warming. In order to develop a novel absorbent, the characteristics of amino acid salts solution as a solvent for $CO_2$ capture in continuous process were investigated. The cost of $CO_2$ capture is almost 70% of total cost of CCS (carbon dioxide capture and storage). In the carbon dioxide capture process, process maintenance costs consist of the absorbent including the absorption, regeneration, degradation, and etc. It is very important to study the characteristics of absorbent in continuous process. In this study, we have investigated the properties of potassium L-lysine (PL) for getting scale-up factors in continuous process. To obtain optimum condition for removal efficiency of $CO_2$ in continuous process by varying liquid-gas (L/G) ratio, concentration of $CO_2$ and absorbent (PL) were tested. The stable condition of absorber and regenerator (L/G) ratio is 3.5. In addition, PL system reveals the highest removal efficiency of $CO_2$ with 3.5 of L/G and 10.5 vol% $CO_2$ ($1.5Nm^3/h$).