DOI QR코드

DOI QR Code

아미노산염을 이용한 이산화탄소 흡수제 연속 재생에 관한 연구

Study of continuous regeneration of carbon dioxide sorbent using amino acid salt

  • 투고 : 2017.11.13
  • 심사 : 2017.12.03
  • 발행 : 2017.12.30

초록

본 연구에서는 이산화탄소 흡수/재생 공정에 효율적으로 적용할 수 있는 아미노산염 흡수제의 연속재생을 통해 재생효율을 확인하였다. 재생효율은 공정적용에 있어 경제성에 큰 영향을 끼치는 인자로, 보다 경제성 있는 이산화탄소 흡수/재생 공정 확립을 위해 연속재생 실험을 진행하였다. 실험에 사용한 아미노산염은 Potassium L-lysinate와 Potassium L-alaninate이며, 각 아미노산과 Potassium hydroxide(KOH)를 1:2 몰비로 혼합하여 사용하였다. 흡수제의 재생 효율을 확인하기 위해 두 물질에 이산화탄소를 충분히 흡수시킨 후 가열을 통해 이산화탄소 탈리실험을 진행하였다. 반응초기에는 L-alanine의 반응속도가 빠르게 이루어졌으나, 시간이 지남에 따라 흡수량이 보다 큰 L-lysine이 높은 농도의 이산화탄소를 배출하였다. 두 물질의 재생효율을 비교하였을 때, L-alanine은 47.26%, L-lysine은 62.11%로 L-lysine이 더 높은 재생효율을 나타내었다. 흡수량 및 재생효율이 좋은 L-lysine을 이용한 연속재생 실험결과, 재생횟수가 증가함에 따라 재생효율이 감소하는 것을 확인 할 수 있었다.

In this study, the regeneration efficiency of the amino acid salt absorbent which can be applied to carbon dioxide absorption / regeneration process was confirmed. The regeneration efficiency has a great influence on the economical judgment of the process. so, continuous regeneration experiment was conducted to establish economical process. The amino acid salts used in the experiments are Potassium L-lysinate and Potassium L-alaninate. Each amino acid and potassium hydroxide(KOH) were mixed at a 1: 2 molar ratio. In order to confirm the regeneration efficiency of the absorbent, carbon dioxide was absorbed in the two materials, and the carbon dioxide desorption experiment was carried out by heating. The initial reaction rate was L-alanine was faster. Over time, L-lysine, desorption higher concentrations of carbon dioxide. L-lysine showed higher regeneration efficiency than L-alanine, (L-alanine 47.26% and L-lysine 62.11%). As a result of the continuous regeneration experiment using the L-lysine having good absorption and regeneration efficiency, it was confirmed that the regeneration efficiency decreases as the number of regeneration increases.

키워드

참고문헌

  1. Korea Carbon Capture & Sequestration R&D Center, www.kcrc.re.kr
  2. J. A. Lim, Y. I. Yoon, S. C. Nam, and S. K. Jeong, "Post-combustion $CO_2$capture with potassium L-lysine", J of the KAIS., Vol.14, No.9 pp. 4627-4634, (2013).
  3. J. K. Lim, "UNFCCC National Communication", Korea Energy Economics Institute, (2003).
  4. Greenhouse Gas Inventory & Research Center of Korea "National Greenhouse Gas Inventory Report of Korea", (2016).
  5. K. G. Kim, J. R. Shin, H. G. Kim, and H. J. Kang, "Study on optimization of liquid carbonation pilot plant (system) using sludge water of ready-mixed concrete", J. of Korean Oil Chemists' Soc., Vol.33, No.2 pp. 239-246, (2016). https://doi.org/10.12925/jkocs.2016.33.2.239
  6. A. P. Hallenbeck, A. Egbebi, K. P. Resnik, D. Hopkinson, S. L. Anna, and J. R. Kitchin, "Comparative microfluidic screening of amino acid salt solutions for post-combustion $CO_2$capture." International Journal of Greenhouse Gas Control, Vol.43, pp. 189-197, (2015). https://doi.org/10.1016/j.ijggc.2015.10.026
  7. S. Shen, Y.-N. Yang, Y. Wang, S. Ren, J. Han, and A. Chen, "$CO_2$absorption into aqueous potassium salts of lysine and proline: Density, viscosity and solubility of $CO_2$." Fluid Phase Equilib., Vol.399, pp. 40-49, (2015). https://doi.org/10.1016/j.fluid.2015.04.021
  8. H. Bosch, G. F. Versteeg, and W. P. M. Van Swaaij, "Gas-liquid mass transfer with parallel reversible reaction-I. Absorption of $CO_2$into solutions of sterically hindered amines", Chem. Eng. Sci., Vol.44, No.11 pp. 2723-2734, (1989). https://doi.org/10.1016/0009-2509(89)85215-7
  9. P. M. M. Blauwhoff, G. F. Versteeg, and W. P. M. Van Swaaij, "A Study on The Reaction Between $CO_2$and Alkanolamines in Aqueous Solutions", Chem. Eng. Sci., Vol.39, No.2 pp. 207-225, (1984). https://doi.org/10.1016/0009-2509(84)80021-4
  10. J. E. Crooks, and J. P. Donnellan, "Kinetics and Mechanism of the Reaction between Carbon Dioxide and Amines in Aqueous Solution", J. Chem. Soc., Perkin transactions, Vol.2, No.4 pp. 331-333, (1989).
  11. G. F. Versteeg, J. A. M. Kuipers, F. P. H. Van Beckum, and W. P. M. Van Swaaij, "Mass transfer with complex reversible chemical reactions-I. Single reversible chemical reaction", Chem. Eng. Sci., Vol.44, No.10 pp. 2295-2310, (1989). https://doi.org/10.1016/0009-2509(89)85163-2
  12. U. R. Aronu, A. Hartono, K. A. Hoff, and H. F. Svendsen, "Kinetics of carbon dioxide absoprtion into aqueous amino acid salt: potassium salt of sarcosine solution", Ind. Eng. Chem. Res., Vol.50, pp. 10465-10475, (2011). https://doi.org/10.1021/ie200596y
  13. J. Ren, L. Wu, and B.-G. Li, "Preparation and $CO_2$sorption/desorption of N-(3-aminopropyl) aminoethyl tributylphosphonium amino acid salt ionic liquids supported into porous silica particles." Ind. Eng. Chem. Res., Vol.51, pp. 7901-7909, (2012). https://doi.org/10.1021/ie2028415
  14. S. Shen, Y.-N. Yang, Y. Bian, and Y. Zhao, " Kinetics of $CO_2$Absorption into Aqueous Basic Amino Acid Salt: Potassium Salt of Lysine Solution" Environ. Sci. Technol., Vol.50, pp. 2054-2063, (2016). https://doi.org/10.1021/acs.est.5b04515
  15. Y.-H. Lim, Y.-M. Jo, and J.-S. Park, "$CO_2$Absorption by Alkali-modified Amino Acid Salts", Appl. Chem. Eng., Vol.22, No.5 pp. 526-531, (2011).