Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.3.783

Comparison of Carbon Dioxide Absorption in Aqueous MEA, DEA, TEA, and AMP Solutions  

Kim, Young Eun (Greenhouse Gas Department, Korea Institute of Energy Research)
Lim, Jin Ah (Greenhouse Gas Department, Korea Institute of Energy Research)
Jeong, Soon Kwan (Greenhouse Gas Department, Korea Institute of Energy Research)
Yoon, Yeo Il (Greenhouse Gas Department, Korea Institute of Energy Research)
Bae, Shin Tae (Materials Development Center, Hyundai Motor Group)
Nam, Sung Chan (Greenhouse Gas Department, Korea Institute of Energy Research)
Publication Information
Abstract
The separation and capture process of carbon dioxide from power plants is garnering interest as a method to reduce greenhouse gas emissions. In this study, aqueous alkanolamine solutions were studied as absorbents for $CO_2$ capture. The solubility of $CO_2$ in aqueous alkanolamine solutions was investigated with a continuous stirred reactor at 313, 333 and 353 K. Also, the heat of absorption ($-{\Delta}H_{abs}$) between the absorbent and $CO_2$ molecules was measured with a differential reaction calorimeter (DRC) at 298 K. The solubility and heat of absorption were determined at slightly higher than atmospheric pressure. The enthalpies of $CO_2$ absorption in monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), and 2-amino-2-methyl-1-propanol (AMP) were 88.91, 70.44, 44.72, and 63.95, respectively. This investigation showed that the heat of absorption is directly related to the quantity of heat for absorbent regeneration, and is dependent on amine type and $CO_2$ loading.
Keywords
Carbon dioxide; Absorption; Alkanolamine; Heat of reaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Oexmann, J. Int. J. Greenhouse Gas Cont. 2010, 4, 36.   DOI   ScienceOn
2 Kim, I.; Svendsen, H. F. Ind. Eng. Chem. Res. 2007, 46, 5803.   DOI   ScienceOn
3 Versteeg, G. F.; van Swaaij, W. P. M. Chem. Eng. Sci. 1988, 43, 573.   DOI   ScienceOn
4 Versteeg, G. F.; van Swaaij, W. P. M. Chem. Eng. Sci. 1988, 43, 587.   DOI   ScienceOn
5 Filburn, T.; Helblb, J. J.; Weiss, R. A. Ind. Eng. Chem. Res. 2005, 44, 1542.   DOI   ScienceOn
6 Hagewiesche, D. P.; Ashour, S. S.; Al-ghawas, H. A.; Sandall, O. C. Chem. Eng. Sci. 1995, 50, 1071.   DOI   ScienceOn
7 Ramachandran, N.; Aboudheir, A.; Idem, R.; Tontiwachwuthikul, P. Ind. Eng. Chem. Res. 2006, 45, 2608.   DOI   ScienceOn
8 Mathonat, C.; Majer, V.; Mather, A. E.; Groiler, J.-P. E. Fluid Phase Equilib. 1997, 140, 171.   DOI   ScienceOn
9 Arcis, H.; Rodier, L.; Coxam, J.-Y. J. Chem. Thermodynamics 2007, 39, 878.   DOI   ScienceOn
10 Kim, I.; Hoff, K. A.; Hessen, E. T.; Haug-Warberg, T.; Svendsen, H. F. Chem. Eng. Sci. 2009, 64, 2027.   DOI   ScienceOn
11 McCann, N.; Maeder, M.; Hasse, H. Energy Procedia 2011, 4, 1542.   DOI   ScienceOn
12 Nogent, H.; Le Tacon, X. J. Loss Prev. Process Ind. 2003, 16, 133.   DOI   ScienceOn
13 Carson, J. K.; Marsh, K. N.; Mather, A. E. J. Chem. Thermodynamics 2000, 32, 1285.   DOI   ScienceOn
14 Chowdhury, F. A.; Okabe, H.; Shimizu, S.; Onoda, M.; Fujioka, Y. Energy Procedia 2009, 1, 1214.
15 Chowdhury, F. A.; Okabe, H.; Yamada, H.; Onoda, M.; Fujioka, Y. Energy Procedia 2011, 4, 201.   DOI   ScienceOn