DOI QR코드

DOI QR Code

Low Concentration CO2 Absorption Performance of Aqueous Alkanolamine Solutions

알카놀아민 수용액을 이용한 저농도 CO2 흡수 특성

  • Park, IL-Gun (Department of Environmental Engineering, Ajou University) ;
  • Hong, Min-Sun (Department of Environmental Engineering, Ajou University) ;
  • Kim, Beom-Seok (Department of Environmental Engineering, Ajou University) ;
  • Kim, Heung-Lea (Pyunghwa Engineering Technique Research Institute)
  • Received : 2013.04.03
  • Accepted : 2014.03.04
  • Published : 2014.03.31

Abstract

In this paper, absorption and reaction characteristics of low $CO_2$ and alkanolamines were investigated. As MEA concentrations increase 1, 2 and 3 wt%, $CO_2$ loadings decrease 0.34 mol-$CO_2/mol$-absorbent, 0.32 mol-$CO_2/mol$-absorbent and 0.3 mol-$CO_2/mol$-absorbent, respectively. Also, $CO_2$ loadings decrease from 0.32 mol-$CO_2/mol$-absorbent, 0.30 mol-$CO_2/mol$-absorbent and 0.28 mol-$CO_2/mol$-absorbent as AMP concentrations increase 1, 2 and 3 wt%. Experimental results with blending solutions show that $CO_2$ loading was the highest, 0.52 mol-$CO_2/mol$-absorbent, when 0.5 wt% MEA and 0.5 wt% AMP were blended.

본 논문에서는 저농도 $CO_2$ 조건에서 알카놀아민 흡수제 별 $CO_2$ 흡수 특성을 도출하였다. 단일흡수제의 경우 MEA 농도가 1 wt%, 2 wt%, 3 wt% 증가 시 $CO_2$ 흡수량은 0.34 mol-$CO_2/mol$-absorbent, 0.32 mol-$CO_2/mol$-absorbent, 0.30 mol-$CO_2/mol$-absorbent로 감소하였고, AMP 농도가 1 wt%, 2 wt%, 3 wt% 증가 시 $CO_2$ 흡수량은 0.32 mol-$CO_2/mol$-absorbent, 0.30 mol-$CO_2/mol$-absorbent, 0.28 mol-$CO_2/mol$-absorbent로 감소하였다. 혼합흡수제의 경우 MEA 0.5 wt%와 AMP 0.5 wt%을 혼합했을 때 0.52 mol-$CO_2/mol$-absorbent로 최대치를 나타냈다.

Keywords

References

  1. IEA, "Prospects for $CO_2$ capture and storage," Energy technology analysis, pp.27-36(2004).
  2. U.S. National Oceanic & Atmospheric Administration (NOAA) Earth System Research Laboratory Home Page, http://www.esrl.noaa.gov(2013).
  3. O, M. G., Park, S. J., Han, K. H., Lee, J. S. and Min, B. M., "The operational characteristics of $CO_2$ 5ton/day absorptive separation pilot plant," Kor. Chem. Eng. Res., 50(1), 128-134(2012). https://doi.org/10.9713/kcer.2012.50.1.128
  4. Seo, Y. W., Moon, Y. S., Jo, S. H., Ryu, C. K. and Yi, C. K., "Effects of Steam and temperature on $CO_2$ capture using dry regenerable sorbent in a bubbling fluidized bed," Kor. Chem. Eng. Res., 43(4), 537-541(2005).
  5. Xu, S., Wang, Y. W., Otto, F. D. and Mather, A. E., "Kinetics of reaction of carbon dioxide with 2-amino-2-methyl-1-propanol solution," Chem. Eng. Sci., 51(6), 841-850(1996). https://doi.org/10.1016/0009-2509(95)00327-4
  6. Austgen, D. M, "A model of vapor-liquid equilibria for acid gas-alkanolamine-water systems," The University of Texas at Austin(1989).
  7. Song, J. H., Yoon, J. H. and Lee, H., "Solubility of carbon dioxide in monoethanolamine + ethylene glycol + water and monoethanolamine + poly (ethylene glycol) + water," J. Chem. Eng. Data, 41, 497-499(1996). https://doi.org/10.1021/je9502758
  8. Jou, F. Y., Mather, A. E. and Otto, F. D., "The solubility of $CO_2$ in a 30 mass percent monoethanolamine solution," Canadian J. Chem. Eng., 73, 140-147(1995). https://doi.org/10.1002/cjce.5450730116
  9. Klaus, S., L., "The thermodynamics of direct air capture of carbon dioxide," Energy, 50(1), 38-46(2013). https://doi.org/10.1016/j.energy.2012.09.012
  10. Holmes, G. and Keith, D., W., "An Air-Liquid Contactor for Large-Scale Capture of $CO_2$ from Air," Philosophical Trans. Royal Soc. A-Math., Phys. Eng. Sc., 370, 4380-4403 (2012). https://doi.org/10.1098/rsta.2012.0137
  11. Keith, D., W., Heidel, K. and Cherry, R., "Capturing $CO_2$ from the atmosphere: Rationale and Process Design Considerations. Geo-Engineering Climate Change," Cambridge University Press, pp. 107-126(2010).
  12. Vladimir, S., D., Janna, V., V., Tatyana, Y., K., Dmitry, A., T. and Aleksey, G., O., "Direct $CO_2$ capture from ambient air using $K_2CO_3/Y_2O_3$ composite sorbent," Fuel, Article in press(2013).
  13. Renato, B., Giuseppe, S. and Marco, M., "Process design and energy requirements for the capture of carbon dioxide from air," Chem. Eng. Proc., 45, 1047-1058(2006). https://doi.org/10.1016/j.cep.2006.03.015
  14. Tao, W., Jun, L., Mengxiang, F. and Zhongyang, L., "A moisture swing sorbent for direct air capture of carbon dioxide : thermodynamic and kinetic analysis," Energy Procedia, 37, 6096-6104(2013). https://doi.org/10.1016/j.egypro.2013.06.538
  15. Caplow, M., "Kinetics of carbamate formation and breakdown," J. Am. Chem. Soc., 90(24), 6795-6803(1968). https://doi.org/10.1021/ja01026a041
  16. Danckwerts, P. V., "The reaction of $CO_2$ with ethanolamines," Chem, Eng. Sci., 34(4), 443-446(1979). https://doi.org/10.1016/0009-2509(79)85087-3
  17. Aboudheir, A., Tontiwachwuthikul, P., Chakma, A. and Idem, R., "Kinetics of the reactive absorption of carbon dioxide in high $CO_2$-loaded, concentrated aqueous monoethanolamine solutions," Chem. Eng. Sci., 58(23), 5195-5210(2003). https://doi.org/10.1016/j.ces.2003.08.014
  18. Yih, S. M. and Shen, K. P., "Kinetics of carbon dioxide reaction with sterically hindered 2-amino-2-methyl-1-propanol aqueous solutions," Ind. Eng. Chem. Res., 27(12), 2237-2241 (1988). https://doi.org/10.1021/ie00084a008
  19. Kumar, P. S., Hogendoom, J. A. and Versteeg, G. F., "Kinetics of the reaction of $CO_2$ with aqueous potassium salt of taurine and glycine" AIChE J., 49(1), 203-2013(2003). https://doi.org/10.1002/aic.690490118
  20. Hook, R. J., "An investigation of some sterically hindered amines as potential carbon dioxide scrubbing compounds," Ind. Eng. Res., 36(5), 1779-1790(1997). https://doi.org/10.1021/ie9605589
  21. Oh, S. K., Rhee, Y. W., Nam, S. C., Yoon, Y. I. and Kim, Y. E., "Study on absorption characteristics of $CO_2$ in aqueous alkanolamine solutions," J. Energy Eng., 17(4), 251-256(2008).