• Title/Summary/Keyword: carbon deposition

Search Result 1,223, Processing Time 0.044 seconds

Various Shape of Carbon Layer on Ga2O3 Thin Film by Controlling Methane Fraction in Radio Frequency Plasma Chemical Vapor Deposition (Ga2O3박막 상에서의 RF 플라즈마 화학기상증착법의 메테인 분율 조절에 의한 탄소층의 다양한 형상 제어 연구)

  • Seo, Ji-Yeon;Shin, Yun-Ji;Jeong, Seong-Min;Kim, Tae-Gyu;Bae, Si-Young
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.2
    • /
    • pp.51-56
    • /
    • 2022
  • In this study, we controlled the shape of a carbon layer on gallium oxide templates. Gallium oxide layers were deposited on sapphire substrates using mist chemical vapor deposition. Subsequently, carbon layers were formed using radio frequency plasma chemical vapor deposition. Various shapes of carbon structures appeared according to the fraction of methane gas, used as a precursor. As methane gas concentration was adjusted from 1 to 100%, The shapes of carbon structures varied to diamonds, nanowalls, and spheres. The growth of carbon isotope structures on Ga2O3 templates will give rise to improving the electrical and thermal properties in the next-generation electronic applications.

Properties of Carbon Films Formed for Renewed Electric Power Energy by Electro-deposition (신 재생 에너지 활용을 위한 Carbon 박막의 특성)

  • Lee, Sang-Heon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.147-150
    • /
    • 2007
  • Electro-deposition of carbon film on silicon substrate in methanol solution was carried out with various current density, solution temperature and electrode spacing between anode and cathode. The carbon films with smooth surface morphology and high electrical resistance were formed when the distance between electrode was relatively wider. The electrical resistance of the carbon films were independent of both current density and solution temperature.

Control the growth direction of carbon nanofibers under direct current bias voltage applied microwave plasma enhanced chemical vapor deposition system

  • Kim Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.5
    • /
    • pp.198-201
    • /
    • 2005
  • Carbon nanofibers were formed on silicon substrate which was applied by negative direct current (DC) bias voltage using microwave plasma-enhanced chemical vapor deposition method. Formation of carbon nanofibers were varied according to the variation of the applied bias voltage. At -250 V, we found that the growth direction of carbon nanofibers followed the applied direction of the bias voltage. Based on these results, we suggest one of the possible techniques to control the growth direction of the carbon nanofibers.

Modelling of Carbon Plume by Laser-ablation Method (레이저 용삭법에 의한 플라즈마의 진전 모델링)

  • So Soon-Youl;Lee Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.492-497
    • /
    • 2006
  • The study on laser-ablation plasmas has been strongly interested in fundamental aspects of laser-solid interaction and consequent plasma generation. In particular, this plasma has been widely used for the deposition of thin solid films and applied to the semiconductors and insulators. In this paper, we developed and discussed the generation of carbon ablation plasmas emitted by laser radiation on a solid target, graphite. The progress of carbon plasmas by laser-ablation was simulated using Monte-Carlo particle model under the pressures of vacuum, 1 Pa, 10 Pa and 66 Pa. At the results, carbon particles with low energy were deposited on the substrate as the pressure becomes higher However, there was no difference of deposition distributions of carbon particles on the substrate regardless of the pressure.

Reduction Characteristics of Oxygen Carrier Particles for Chemical-looping Combustor with Different Fuels (매체순환식 가스연소기용 산소공여입자들의 연료별 연소특성)

  • Ryu, Ho-Jung;Kim, Kyung-Su;Park, Yeong-Seong;Park, Moon-Hee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.1
    • /
    • pp.45-54
    • /
    • 2009
  • Reduction reactivity and carbon deposition characteristics of three oxygen carrier particles(OCN01, OCN02, OCN03) have been investigated by using hydrogen, methane, syngas, and natural gas as fuels. For all particles, the maximum conversion, the oxygen transfer capacity, and the degree of carbon deposition increased as the reactive carbon contents increased. The reduction rate and the oxygen transfer rate increased as the moles of required oxygen per input gas increased. The change of maximum conversion, reduction rate, oxygen transfer capacity, oxygen transfer rate and degree of carbon deposition for different fuels can be explained consistently by using parameters such as the reactive carbon contents and the moles of require oxygen per input gas.

Effect of oxygen distribution for hot spot and carbon deposition minimization in a methane autothermal reforming reactor

  • Lee, Shin-Ku;Bae, Joong-Myeon;Kim, Yong-Min;Park, Joong-Uen;Lim, Sung-Kwang
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.1996-2000
    • /
    • 2008
  • In autothermal reforming reaction, oxygen to carbon ratio (OCR) and steam to carbon ratio (SCR) are significant factors, which control temperature and carbon deposition into the reactor. The OCR is more sensitive than the SCR to affect the temperature distribution and reforming efficiency. In conventional operation, hydrocarbon fuel, steam, and oxygen was homogeneously mixed and injected into the reactor in order to get hydrogen-rich gas. The temperature was abruptly raised due to fast oxidation reaction in the former part of the reactor. Deactivation of packed catalysts can be accelerated there. In the present study, therefore, the effect of the oxygen distribution is introduced and investigated to suppress the carbon deposition and to maintain the reactor in the mild operating temperature (e.g., $700{\sim}800^{\circ}C$). In order to investigate the effect numerically, the following models are adopted; heterogeneous reaction model and two-medium model for heat balance.

  • PDF

The Characteristics of Pyrolytic Carbon Deposited in a Fluidized Bed by CVD (Fluidized Bed에서 화학증착법에 의해 증착된 열분해 탄소의 특성)

  • 승성표;이재영;진억용
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.2
    • /
    • pp.156-164
    • /
    • 1984
  • The characteristic of pyrolytic carbon deposited in a fluidized bed as measured by density apparent crystallite size and viewed metallographically under polarized light can be easily controlled by adjusting the deposition parameters such as deposition temperature and propane flow rate or silicon content. The density of isotopic pyrolytic carbons deposited from propane between 120$0^{\circ}C$ and 140$0^{\circ}C$ increases with increasing propane flow rate and decreasing deposition temperature from 1, 73g/cc to 2.08g/cc. The apparent crystallite size Lc parameter appears to depend only on deposition temperature being entirely independent of the propane flow rate. The carbon matrix density of the silicon-alloyed carbonds deposited from propane and methyltrichlorosil-ane from 2.05g/cc for a silicon content around 9wt% to 2.67g/cc for a silicon content of 36.7wt% The Lc parameter of the deposition temperature being entirely independent of the silicon content.

  • PDF

Preparation and Characterization of Molecular Sieving Carbon by Methane and Benzene Cracking over Activated Carbon Spheres

  • Joshi, Harish Chandra;Kumar, Rajesh;Singh, Rohitashaw Kumar;Lal, Darshan
    • Carbon letters
    • /
    • v.8 no.1
    • /
    • pp.12-16
    • /
    • 2007
  • Molecular sieving carbon (MSC) for separating $O_2-N_2$ and $CO_2-CH_4$ has been prepared through chemical vapor deposition (CVD) of methane and benzene on activated carbon spheres (ACS) derived from polystyrene sulfonate beads. The validity of the material for assessment of molecular sieving behavior for $O_2-N_2$ and $CO_2-CH_4$ pair of gases was assessed by the kinetic adsorption of the corresponding gases at $25^{\circ}C$. It was observed that methane cracking on ACS lead to deposition of carbon mostly in whole length of pores rather than in pore entrance, resulting in a reduction in adsorption capacity. MSC showing good selectivity for $CO_2-CH_4$ and $O_2-N_2$ separation was obtained through benzene cracking on ACS with benzene entrantment of $0.40{\times}10^{-4}\;g/ml$ at cracking temperature of $725^{\circ}C$ for a period of 90 minutes resulting in a selectivity of 3.31:1.00 for $O_2-N_2$ and 8.00:1.00 for $CO_2-CH_4$ pair of gases respectively.

Trend in Research and Application of Hard Carbon-based Thin Films (탄소계 경질 박막의 연구 및 산업 적용 동향)

  • Lee, Gyeong-Hwang;Park, Jong-Won;Yang, Ji-Hun;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.111-112
    • /
    • 2009
  • Diamond-like carbon (DLC) is a convenient term to indicate the compositions of the various forms of amorphous carbon (a-C), tetrahedral amorphous carbon (ta-C), hydrogenated amorphous carbon and tetrahedral amorphous carbon (a-C:H and ta-C:H). The a-C film with disordered graphitic ordering, such as soot, chars, glassy carbon, and evaporated a-C, is shown in the lower left hand corner. If the fraction of sp3 bonding reaches a high degree, such an a-C is denoted as tetrahedral amorphous carbon (ta-C), in order to distinguish it from sp2 a-C [2]. Two hydrocarbon polymers, that is, polyethylene (CH2)n and polyacetylene (CH)n, define the limits of the triangle in the right hand corner beyond which interconnecting C-C networks do not form, and only strait-chain molecules are formed. The DLC films, i.e. a-C, ta-C, a-C:H and ta-C:H, have some extreme properties similar to diamond, such as hardness, elastic modulus and chemical inertness. These films are great advantages for many applications. One of the most important applications of the carbon-based films is the coating for magnetic hard disk recording. The second successful application is wear protective and antireflective films for IR windows. The third application is wear protection of bearings and sliding friction parts. The fourth is precision gages for the automotive industry. Recently, exciting ongoing study [1] tries to deposit a carbon-based protective film on engine parts (e.g. engine cylinders and pistons) taking into account not only low friction and wear, but also self lubricating properties. Reduction of the oil consumption is expected. Currently, for an additional application field, the carbon-based films are extensively studied as excellent candidates for biocompatible films on biomedical implants. The carbon-based films consist of carbon, hydrogen and nitrogen, which are biologically harmless as well as the main elements of human body. Some in vitro and limited in vivo studies on the biological effects of carbon-based films have been studied [$2{\sim}5$].The carbon-based films have great potentials in many fields. However, a few technological issues for carbon-based film are still needed to be studied to improve the applicability. Aisenberg and Chabot [3] firstly prepared an amorphous carbon film on substrates remained at room temperature using a beam of carbon ions produced using argon plasma. Spencer et al. [4] had subsequently developed this field. Many deposition techniques for DLC films have been developed to increase the fraction of sp3 bonding in the films. The a-C films have been prepared by a variety of deposition methods such as ion plating, DC or RF sputtering, RF or DC plasma enhanced chemical vapor deposition (PECVD), electron cyclotron resonance chemical vapor deposition (ECR-CVD), ion implantation, ablation, pulsed laser deposition and cathodic arc deposition, from a variety of carbon target or gaseous sources materials [5]. Sputtering is the most common deposition method for a-C film. Deposited films by these plasma methods, such as plasma enhanced chemical vapor deposition (PECVD) [6], are ranged into the interior of the triangle. Application fields of DLC films investigated from papers. Many papers purposed to apply for tribology due to the carbon-based films of low friction and wear resistance. Figure 1 shows the percentage of DLC research interest for application field. The biggest portion is tribology field. It is occupied 57%. Second, biomedical field hold 14%. Nowadays, biomedical field is took notice in many countries and significantly increased the research papers. DLC films actually applied to many industries in 2005 as shown figure 2. The most applied fields are mold and machinery industries. It took over 50%. The automobile industry is more and more increase application parts. In the near future, automobile industry is expected a big market for DLC coating. Figure 1 Research interests of carbon-based filmsFigure 2 Demand ratio of DLC coating for industry in 2005. In this presentation, I will introduce a trend of carbon-based coating research and applications.

  • PDF

The geometry change of carbon nanofilaments by SF6 incorporation in a thermal chemical vapor deposition system

  • Kim, Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.3
    • /
    • pp.119-123
    • /
    • 2011
  • Carbon nanotilaments (CNFs) could be synthesized on nickel catalyst layer-deposited silicon oxide substrate using $C_2H_2$ and$H_2$ as source gases under thermal chemical vapor deposition system. By the incorporation of $SF_6$ as a cyclic modulation manner, the geometries of carbon coils-related materials, such as nano-sized coil and wave-like nano-sized coil could be observed on the substrate. The characteristics (formation density and morphology) of as-grown CNFs with or without $SF_6$ incorporation were investigated. Diameter size reduction for the individual CNFs-related shape and the enhancement of the formation density of CNFs-related material could be achieved by the incorporation of $SF_6$ as a cyclic modulation manner. The cause for these results was discussed in association with the slightly increased etching ability by $SF_6$ addition and the sulfur role in SF 6 for the geometry change.