• Title/Summary/Keyword: carbon capture and storage

Search Result 160, Processing Time 0.053 seconds

Behavior of contaminated liquid CO2 droplets in the deep sea

  • Nguyen, Thao;Hwang, Jin Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.257-257
    • /
    • 2015
  • Carbon Capture and Storage with ocean sequestration is being considered as one of the most effective option for reducing the $CO_2$ net flux from atmosphere nowadays. But it is still possible for $CO_2$ substance to leaks out from transport pipeline or from the under seabed storage sites and causing damage to ambient environment. The behavior of liquid $CO_2$ under droplet shape would be strongly affected by the presence of other contaminants such as $SO_2$ comes from processing processes. This presentation shows the behavior in the sea water of pure liquid $CO_2$ droplets as well as droplets that consist of $SO_2$ substances. The study uses computational fluid dynamic models in comparison with experimental data from other previous researchers. Droplet of liquid $CO_2$ is assumed to be released at several depths in deep ocean, with other environmental conditions are set up respectively. All calculations are conducted with many different ratio of contaminant $SO_2$ to provide fundamental data of those particles rising characteristics. The effect of contaminants on the behavior of $CO_2$ droplets would be clearly shown through the results of particle deformation, terminal rising velocity happen due to buoyancy force driving from the difference in density of $CO_2$ substance and ocean water around.

  • PDF

Review of the use of activated biochar for energy and environmental applications

  • Lee, Hyung Won;Kim, Young-Min;Kim, Seungdo;Ryu, Changkook;Park, Sung Hoon;Park, Young-Kwon
    • Carbon letters
    • /
    • v.26
    • /
    • pp.1-10
    • /
    • 2018
  • Biochar obtained from the thermal conversion of biomass has high potential as a substitute material for activated carbon and other carbon-based materials because it is economical, environmentally friendly, and carbon-neutral. The physicochemical properties of biochar can also be controlled by a range of activation methods such as physical, chemical, and hydrothermal treatments. Activated biochar can be used as a catalyst for the catalytic pyrolysis of a biomass and as an absorbent for the removal of heavy metal ions and atmospheric pollutants. The applications of biochar are also expanding not only as a key component in producing energy storage materials, such as supercapacitors, lithium ion batteries, and fuel cells, but also in carbon capture and storage. This paper reviews the recent progress on the activation of biochar and its diverse present and future applications.

Impact of Sulfur Dioxide Impurity on Process Design of $CO_2$ Offshore Geological Storage: Evaluation of Physical Property Models and Optimization of Binary Parameter (이산화황 불순물이 이산화탄소 해양 지중저장 공정설계에 미치는 영향 평가: 상태량 모델의 비교 분석 및 이성분 매개변수 최적화)

  • Huh, Cheol;Kang, Seong-Gil;Cho, Mang-Ik
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.187-197
    • /
    • 2010
  • Carbon dioxide Capture and Storage(CCS) is regarded as one of the most promising options to response climate change. CCS is a three-stage process consisting of the capture of carbon dioxide($CO_2$), the transport of $CO_2$ to a storage location, and the long term isolation of $CO_2$ from the atmosphere for the purpose of carbon emission mitigation. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the $CO_2$ mixture captured from the power plants and steel making plants contains many impurities such as $N_2$, $O_2$, Ar, $H_2O$, $SO_2$, $H_2S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification, transport and injection processes. In order to design a reliable $CO_2$ marine geological storage system, it is necessary to analyze the impact of these impurities on the whole CCS process at initial design stage. The purpose of the present paper is to compare and analyse the relevant physical property models including BWRS, PR, PRBM, RKS and SRK equations of state, and NRTL-RK model which are crucial numerical process simulation tools. To evaluate the predictive accuracy of the equation of the state for $CO_2-SO_2$ mixture, we compared numerical calculation results with reference experimental data. In addition, optimum binary parameter to consider the interaction of $CO_2$ and $SO_2$ molecules was suggested based on the mean absolute percent error. In conclusion, we suggest the most reliable physical property model with optimized binary parameter in designing the $CO_2-SO_2$ mixture marine geological storage process.

A Review of Enhanced Oil Recovery Technology with CCS and Field Cases (CCS와 연계한 석유회수증진 기술 동향 및 현장사례 분석)

  • Park Hyeri;Hochang Jang
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.59-71
    • /
    • 2023
  • Carbon capture, and storage (CCS) is important for the reduction of greenhouse gases and achieving carbon neutrality. CCS focuses on storing captured CO2 permanently in underground reservoirs. CO2-enhanced oil recovery (CO2-EOR) is one form of CCS, where CO2 is injected into the underground to enhance oil recovery. CO2-EOR not only aids in the extraction of residual oil but also contributes to carbon neutrality by storing CO2 underground continuously. CO2-EOR can be classified into miscible and immiscible methods, with the CO2-water alternating gas (CO2-WAG) technique being a representative approach within the miscible method. In CO2-WAG, water and CO2 are alternately injected into the reservoir, enabling oil production and CO2 storage. The WAG method allows for controlling the breakthrough of injection fluids, providing advantages in oil recovery. It also induces hysteresis in relative permeability during the injection and production process, expanding the amount of trapped CO2. In this study, the effects of enhancing oil recovery and storing CO2 underground during CO2-EOR were presented. Additionally, cases of CO2-EOR application in relation to CCS were introduced.

Suggestion for Technology Development and Commercialization Strategy of CO2 Capture and Storage in Korea (한국 이산화탄소 포집 및 저장 기술개발 및 상용화 추진 전략 제안)

  • Kwon, Yi Kyun;Shinn, Young Jae
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.381-392
    • /
    • 2018
  • This study examines strategies and implementation plans for commercializing $CO_2$ capture and storage, which is an effective method to achieve the national goal of reducing greenhouse gas. In order to secure cost-efficient business model of $CO_2$ capture and storage, we propose four key strategies, including 1) urgent need to select a large-scale storage site and to estimate realistic storage capacity, 2) minimization of source-to-sink distance, 3) cost-effectiveness through technology innovation, and 4) policy implementation to secure public interest and to encourage private sector participation. Based on these strategies, the implementation plans must be designed for enabling $CO_2$ capture and storage to be commercialized until 2030. It is desirable to make those plans in which large-scale demonstration and subsequent commercial projects share a single storage site. In addition, the plans must be able to deliver step-wised targets and assessment processes to decide if the project will move to the next stage or not. The main target of stage 1 (2019 ~ 2021) is that the large-scale storage site will be selected and post-combustion capture technology will be upgraded and commercialized. The site selection, which is prerequisite to forward to the next stage, will be made through exploratory drilling and investigation for candidate sites. The commercial-scale applicability of the capture technology must be ensured at this stage. Stage 2 (2022 ~ 2025) aims design and construction of facility and infrastructure for successful large-scale demonstration (million tons of $CO_2$ per year), i.e., large-scale $CO_2$ capture, transportation, and storage. Based on the achievement of the demonstration project and the maturity of carbon market at the end of stage 2, it is necessary to decide whether to enter commercialization of $CO_2$ capture and storage. If the commercialization project is decided, it will be possible to capture and storage 4 million tons of $CO_2$ per year by the private sector in stage 3 (2026 ~ 2030). The existing facility, infrastructure, and capture plant will be upgraded and supplemented, which allows the commercialization project to be cost-effective.

Trends of Underground $CO_2$ Storage Technology for the Large Scale Reduction of GHG (온실가스 대량감축을 위한 $CO_2$ 지중저장의 기술 동향)

  • Chae, Kwagn-Seok;Lee, Sang-Pil;Yoon, Sung-Wook;Matsuoka, Toshifumi
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.309-317
    • /
    • 2010
  • CCS (Carbon dioxide Capture and Storage) is a means of mitigating the contribution of $CO_2$ to the Greenhouse gas, from large point sources such as power plants and steel companies. CCS is a process whereby $CO_2$ is captured from gases produced by fossil fuel combustion, compressed, transported and injected into deep geologic formations for permanent storage. CCS applied to a conventional power plant can reduce $CO_2$ emissions to the atmosphere by approximately 80~90% compared to a plant without CCS. The IPCC estimates that the economic potential of CCS will be between 10% and 55% of the total carbon mitigation effort by year 2100. In this paper, overseas sites where CCS technology is being applied and technical development trends for CCS are briefly reviewed.

Capture and Ocean Storage of Carbon Dioxide Using Alkaline Wastes and Seawater (알칼리성 폐기물과 해수를 이용한 이산화탄소 포집 및 해양저장)

  • Lee, Junghyun;Park, Misun;Joo, Jisun;Gil, Joon-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.3
    • /
    • pp.149-154
    • /
    • 2017
  • We investigate the availability of $CO_2$ ocean storage by means of chemical conversion of $CO_2$ to the dissolved inorganic carbon (mainly the bicarbonate ion) in seawater. The accelerated weathering of limestone (AWL) technique, which is accelerating the natural $CO_2$ uptake process through the chemical conversion using limestone and seawater, was proposed as an alternative method for reducing energy-related $CO_2$ emission. The method presented in this paper is slightly different from the AWL method. It involves reacting $CO_2$ with seawater and quicklime obtained from alkaline wastes to produce the bicarbonate-rich solution over 100 times more than seawater, which could be released and diluted into the ocean. The released dense bicarbonate-enriched water mass could subside into the deeper layer because of the density flow, and could be sequestrated stably in the ocean.

Patent Trend Analysis of Carbon Capture/Storage/Utilization Technology (이산화탄소 포집/저장/활용 기술 특허 동향 분석)

  • Bae, Junhee;Seo, Hangyeol;Ahn, Eunyoung;Lee, Jaewook
    • Economic and Environmental Geology
    • /
    • v.50 no.5
    • /
    • pp.389-400
    • /
    • 2017
  • In December 2015, 195 nations agreed to cut green house gas emissions in the Paris Climate Convention, and all over the world showed their willingness to participate in greenhouse gas mitigation. Accordingly, various technologies related to greenhouse gas reduction are being considered, among which carbon dioxide capture, storage, utilization (CCUS) technologies are attracting attention as an unique technology capable of directly removing greenhouse gases. However, CCUS technologies are still costly and have low efficiency. It is still more important to analyze the level of CCUS technology before commercialization and to understand trends and to predict future direction of technology. Therefore, this study analyzes the patent trends of CCUS technology and derives implications for future directions. As a result of country analysis, the United States had the highest number of applications, and sectoral analysis shows that 64% of total patents are from capture sector. Companies such as Alstom technology, Toshiba Corp, and Mitsubishi Heavy are focusing on capturing carbon dioxide. In Korea, government research institutes have focused on storage and utilization technologies. In addition, since the late 2000s, patent applications have increased rapidly, and many countries have been interested in the development of the technology and have made efforts to reduce greenhouse gas.

Recent Development in Metal Oxides for Carbon Dioxide Capture and Storage (금속 산화물을 기반으로 한 이산화탄소 포집과 저장에 대한 최근 기술)

  • Oh, Hyunyoung;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.2
    • /
    • pp.97-110
    • /
    • 2020
  • CO2 capture and storage (CCS) is one of the promising technologies that can mitigate ever-growing emission of anthropogenic carbon dioxide and resultant climate change. Among them, chemical looping combustion (CLC) and calcium looping (CaL) are getting increasing attention recently as the prospective alternatives to the existing amine scrubbing. Both methods use metal oxides in the process and consist of cyclic reactions. Yet, due to their cyclic nature, they both need to resolve sintering-induced cyclic stability deterioration. Moreover, the structure of the metal oxides needs to be optimized to enhance the overall performance of CO2 capture and storage. Deposition of thin film coating on the metal oxide is another way to get rid of wear and tear during the sintering process. Chemical vapor deposition or atomic layer deposition are the well-known, established methods to form thin film membranes, which will be discussed in this review. Various effective recent developments on structural modification of metal oxide and incorporation of stabilizers for cyclic stability are also discussed.

Technical and Economic Assessment of CO2 Transportation Options for Large-scale Integrated Carbon Capture & Sequestration(CCS) Project in South Korea

  • Lee, Ji Hyun;Kim, Beom-Ju;Kwak, No Sang;Shim, Jae-Goo;Shin, Su Hyun;Hwang, Sun-Na;Lee, Jung-Hyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 2017
  • In order to examine the feasibility of Carbon Capture & Sequestration, a major technological strategy for the national goal of greenhouse gas reduction, this paper studies the various methods and corresponding costs for the transportation of $CO_2$ captured at the domestic thermal power plants, as well as performing comparative analysis with overseas CCS demonstration projects. It is predicted that the investment cost would be about 98 million USD when the using land-based pipelines to transport captured $CO_2$ from the thermal power plant located in the south coast. And using marine-based offshore pipelines, it will cost about twice the amount. When the captured $CO_2$ is transported from the power plant in the west coast instead, the cost is expected to increase substantially due to the transportation distance to the storage site being more than double to that of the south coast power plant case.