DOI QR코드

DOI QR Code

Review of the use of activated biochar for energy and environmental applications

  • Lee, Hyung Won (School of Environmental Engineering, University of Seoul) ;
  • Kim, Young-Min (Department of Environmental Sciences and Biotechnology, Hallym University) ;
  • Kim, Seungdo (Department of Environmental Sciences and Biotechnology, Hallym University) ;
  • Ryu, Changkook (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Park, Sung Hoon (Department of Environmental Engineering, Sunchon National University) ;
  • Park, Young-Kwon (School of Environmental Engineering, University of Seoul)
  • Received : 2017.09.13
  • Accepted : 2017.11.21
  • Published : 2018.04.30

Abstract

Biochar obtained from the thermal conversion of biomass has high potential as a substitute material for activated carbon and other carbon-based materials because it is economical, environmentally friendly, and carbon-neutral. The physicochemical properties of biochar can also be controlled by a range of activation methods such as physical, chemical, and hydrothermal treatments. Activated biochar can be used as a catalyst for the catalytic pyrolysis of a biomass and as an absorbent for the removal of heavy metal ions and atmospheric pollutants. The applications of biochar are also expanding not only as a key component in producing energy storage materials, such as supercapacitors, lithium ion batteries, and fuel cells, but also in carbon capture and storage. This paper reviews the recent progress on the activation of biochar and its diverse present and future applications.

Keywords

References

  1. Y.M. Kim, T.U. Han, B.A. Hwang, B. Lee, H.W. Lee, Y.K. Park, S. Kim, Korean J. Chem. Eng., 33, 2350 (2016). https://doi.org/10.1007/s11814-016-0142-2
  2. T.U. Han, Y.M. Kim, A. Watanabe, N. Teramae, Y.K. Park, S. Kim, Korean J. Chem. Eng., 34, 1214 (2017). https://doi.org/10.1007/s11814-016-0354-5
  3. H. Lee, Y.M. Kim, I.G. Lee, J.K. Jeon, S.C. Jung, J.D. Chung, W.G. Choi, Y.K. Park, Korean J. Chem. Eng., 33, 3299 (2016). https://doi.org/10.1007/s11814-016-0214-3
  4. C.H. Ko, S.H. Park, J.K. Jeon, D.J. Suh, K.E. Jeong, Y.K. Park, Korean J. Chem. Eng., 29, 1657 (2012). https://doi.org/10.1007/s11814-012-0199-5
  5. S. Wang, G. Dai, H. Yang, Z. Lou, Prog. Energy Combust. Sci., 62, 33 (2017). https://doi.org/10.1016/j.pecs.2017.05.004
  6. H.W. Lee, Y.M. Kim, J. Jae, J.K. Jeon, S.C. Jung, S.C. Kim, Y.K. Park, Energy Conv. Manag., 129, 81 (2016). https://doi.org/10.1016/j.enconman.2016.10.001
  7. A.V. Bridgwater, Chem. Eng. J., 91, 87 (2003). https://doi.org/10.1016/S1385-8947(02)00142-0
  8. M. Shahbaz, S. Yusup, A. Inayat, D.O. Patrick, A. Pratama, M. Ammar, Bioresour. Technol., 241, 284 (2017). https://doi.org/10.1016/j.biortech.2017.05.119
  9. S. Czernik, A.V. Bridgwater, Energy Fuels, 18, 590 (2004). https://doi.org/10.1021/ef034067u
  10. D. Mohan, C.U. Pittman Jr, P.H. Steele, Energy Fuels 20, 848 (2006). https://doi.org/10.1021/ef0502397
  11. J.S. Cha, S.H. Park, S.C. Jung, C. Ryu, J.K. Jeon, M.C. Shin, Y.K. Park, J. Ind. Eng. Chem., 40, 1 (2016). https://doi.org/10.1016/j.jiec.2016.06.002
  12. K. Qian, A. Kumar, H. Zhang, D. Bellmer, R. Huhnke, Renew. Sust. Energ. Rev., 42, 1055 (2015). https://doi.org/10.1016/j.rser.2014.10.074
  13. R. Azargohar, A.K. Dalai, Micropor. Mesopor. Mat., 110, 413 (2008) https://doi.org/10.1016/j.micromeso.2007.06.047
  14. J. Lee, K.H. Kim, E.E. Kwon, Renew. Sust. Energ. Rev., 77, 70 (2017). https://doi.org/10.1016/j.rser.2017.04.002
  15. A. Bhatnagar, M. Sillanpaa, Adv. Colloid Interface Sci., 152, 26 (2009). https://doi.org/10.1016/j.cis.2009.09.003
  16. M. Zhang, B. Gao, Y. Yao, Y. Xue, M. Inyang, Chem. Eng. J., 210, 26 (2012). https://doi.org/10.1016/j.cej.2012.08.052
  17. O.S. Amuda, A.A. Giwa, I.A. Bello, Biochem. Eng. J., 36, 174 (2007). https://doi.org/10.1016/j.bej.2007.02.013
  18. X. Tan, Y. Liu, Y. Gu, Y. Xu, G. Zeng, X. Hu, S. Liu, X. Wang, S. Liu, J. Li, Bioresour. Technol., 212, 318 (2016). https://doi.org/10.1016/j.biortech.2016.04.093
  19. A.N.A. El-Hendawy, S.E. Samra, B.S. Girgis, Colloid Surf. A-Physicochem. Eng. Asp., 180, 209 (2001). https://doi.org/10.1016/S0927-7757(00)00682-8
  20. B.S. Kim, H.W. Lee, S.H. Park, K. Baek, J.K. Jeon, H.J. Cho, S.C. Jung, S.C. Kim, Y.K. Park, Environ. Sci. Pollut. Res., 23, 985 (2016). https://doi.org/10.1007/s11356-015-4368-z
  21. S. Ren, H. Lei, L. Wang, Q. Bu, S. Chen, J. Wu, RSC Adv., 4, 10731 (2014). https://doi.org/10.1039/C4RA00122B
  22. K. Qian, A. Kumar, Fuel, 162, 47 (2015). https://doi.org/10.1016/j.fuel.2015.08.064
  23. J.S. Cha, J.C. Choi, J.H. Ko, Y.K. Park, S.H. Park, K.E. Jeong, S.S. Kim, J.K. Jeon, Chem. Eng. J., 156, 321 (2010). https://doi.org/10.1016/j.cej.2009.10.027
  24. B. Shen, J. Chen, S. Yue, G. Li, Fuel, 156, 47 (2015). https://doi.org/10.1016/j.fuel.2015.04.027
  25. X. He, P. Ling, M. Yu, X. Wang, X. Zhang, M. Zheng, Electrochim. Acta 105, 635 (2013). https://doi.org/10.1016/j.electacta.2013.05.050
  26. M.C. Liu, L.B. Kong, C. Lu, X.M. Li, Y.C. Luo, L. Kang, RSC Adv., 2, 1890 (2012). https://doi.org/10.1039/c2ra01175a
  27. H. Wang, Z. Xu, A. Kohandehghan, Z. Li, K. Cui, X. Tan, T.J. Ste- phenson, C.K. King'ondu, C.M.B. Holt, B.C. Olsen, J.K. Tak, D. Harfeld, A.O. Anyia, D. Mitlin, ACS Nano, 7, 5131 (2013). https://doi.org/10.1021/nn400731g
  28. I. Isaev, G. Salitra, A. Soffer, Y.S. Cohen, D. Aurbach, J. Fischer, J. Power Sources, 119-121, 28 (2003). https://doi.org/10.1016/S0378-7753(03)00119-8
  29. E. Peled, V. Eshkenazi, Y. Rosenberg, J. Power Sources, 76, 153 (1998). https://doi.org/10.1016/S0378-7753(98)00148-7
  30. S.Y. Ahn, S.Y. Eom, Y.H. Rhie, Y.M. Sung, C.E. Moon, G.M. Choi, D.J. Kim, Appl. Energy, 105, 207 (2013). https://doi.org/10.1016/j.apenergy.2013.01.023
  31. J. Yu, Y. Zhao, Y. Li, J. Power Sources, 270, 312 (2014). https://doi.org/10.1016/j.jpowsour.2014.07.125
  32. T.M. Huggins, J.J. Pietron, H. Wang, Z.J. Ren, J.C. Biffnger, Bioresour. Technol. 195, 147 (2015). https://doi.org/10.1016/j.biortech.2015.06.012
  33. A.S. Gonzalez, M.G. Plaza, F. Rubiera, Chem. Eng. J., 230, 456 (2013). https://doi.org/10.1016/j.cej.2013.06.118
  34. H.W. Lee, R.S. Park, S.H. Park, S.C. Jung, J.K. Jeon, S.C. Kim, J.D. Chung, W.G. Choi, Y.K. Park, Carbon Lett., 18, 49 (2016). https://doi.org/10.5714/CL.2016.18.049
  35. Y. Fan, R. Yang, Z. Lei, N. Liu, J. Lv, S. Zhai, B. Zhai, L. Wang, Korean J. Chem. Eng., 33, 1416 (2016). https://doi.org/10.1007/s11814-015-0248-y
  36. H. Lee, R.S. Park, H.W. Lee, Y. Hong, Y. Lee, S.H. Park, S.C. Jung, K.S. Yoo, J.K. Jeon, Y.K. Park, Carbon Lett., 19, 1 (2016). https://doi.org/10.5714/CL.2016.19.001
  37. Z. Song, F. Lian, Z. Yu, L. Zhu, B. Xing, W. Qiu, Chem. Eng. J., 242, 36 (2014). https://doi.org/10.1016/j.cej.2013.12.061
  38. K.W. Jung, T.U. Jeong, M.J. Hwang, K. Kim, K.H. Ahn, Bioresour. Technol., 198, 603 (2015). https://doi.org/10.1016/j.biortech.2015.09.068
  39. D. Mohan, H. Kumar, A. Sarswat, M. Alexandre-Franco, C.U. Pittman Jr., Chem. Eng. J., 236, 513 (2014). https://doi.org/10.1016/j.cej.2013.09.057
  40. M. Inyang, B. Gao, A. Zimmerman, M. Zhang, H. Chen, Chem. Eng. J., 236, 39 (2014). https://doi.org/10.1016/j.cej.2013.09.074
  41. J. Tang, H. Lv, Y. Gong, Y. Huang, Bioresour. Technol., 196, 355 (2015). https://doi.org/10.1016/j.biortech.2015.07.047
  42. Y. Zhou, B. Gao, A.R. Zimmerman, J. Fang, Y. Sun, X. Cao, Chem. Eng. J., 231, 512 (2013). https://doi.org/10.1016/j.cej.2013.07.036
  43. A. Ros, M.A. Lillo-Rodenas, E. Fuente, M.A. Montes-Moran, M.J. Martin, A. Linares-Solano, Chemosphere, 65, 132 (2006). https://doi.org/10.1016/j.chemosphere.2006.02.017
  44. Z. Gao, Y. Zhang, N. Song, X. Li, Mater. Res. Lett., 5, 69 (2017). https://doi.org/10.1080/21663831.2016.1250834
  45. A. Saba, P. Saha, M.T. Reza, Fuel Process. Technol., 167, 711 (2017). https://doi.org/10.1016/j.fuproc.2017.08.016
  46. M. Titirici, M. Antonietti, Chem. Soc. Rev., 39, 103 (2010). https://doi.org/10.1039/B819318P
  47. D. Xin-hui, C. Srinivasakannan, P. Jin-hui, Z. Li-bo, Z. Zheng-yong, Biomass Bioenerg., 35, 3920 (2011). https://doi.org/10.1016/j.biombioe.2011.06.010
  48. A.M. Abioye, F.N. Ani, Renew. Sust. Energ. Rev., 52, 1282 (2015). https://doi.org/10.1016/j.rser.2015.07.129
  49. H. Shafaghat, P.S. Rezaei, D. Ro, J. Jae, B.S. Kim, S.C. Jung, B.H. Sung, Y.K. Park, J. Ind. Eng. Chem., 54, 447 (2017). https://doi.org/10.1016/j.jiec.2017.06.026
  50. W. Won, C.T. Maravelias, Renew. Energy, 114, 357 (2017). https://doi.org/10.1016/j.renene.2017.07.023
  51. C. Hu, R. Xiao, H. Zhang, Bioresour. Technol., 243, 1133 (2017). https://doi.org/10.1016/j.biortech.2017.07.011
  52. Z. Qi, C. Jie, W. Tiejun, X. Ying, Energy Convers. Manage., 48, 87 (2007). https://doi.org/10.1016/j.enconman.2006.05.010
  53. H.W. Lee, Y.M. Kim, J. Jae, B.H. Sung, S.C. Jung, S.C. Kim, J.K. Jeon, Y.K. Park, J. Anal. Appl. Pyrolysis, 122, 282 (2016). https://doi.org/10.1016/j.jaap.2016.09.015
  54. Y.M. Kim, J. Jae, B.S. Kim, Y. Hong, S.C. Jung, Y.K. Park, Energy Conv. Manag., 149, 966 (2017). https://doi.org/10.1016/j.enconman.2017.04.033
  55. Y. Lee, H. Shafaghat, J.K. Kim, J.K. Jeon, S.C. Kim, I.G. Lee, Y.K. Park, Korean J. Chem. Eng., 34, 2180 (2017). https://doi.org/10.1007/s11814-017-0126-x
  56. D. Li, C. Briens, F. Berruti, Bioresour. Technol. 189, 7 (2015). https://doi.org/10.1016/j.biortech.2015.04.004
  57. L.A. Poggi, K. Singh, Biomass Bioenerg., 90, 243 (2016). https://doi.org/10.1016/j.biombioe.2016.04.018
  58. R.M. DEll, D.A.J. Rand, J. Power Sources, 100, 2 (2001). https://doi.org/10.1016/S0378-7753(01)00894-1
  59. N. Linares, A.M. Silvestre-Albero, E. Serrano, J. Silvestre-Albero, J. Garcia-Martinez, Chem. Soc. Rev., 43, 7681 (2014). https://doi.org/10.1039/C3CS60435G
  60. L. Wei, M. Sevilla, A.B. Fuertes, R. Mokaya, G. Yushin, Adv. Energy Mat., 1, 356 (2011). https://doi.org/10.1002/aenm.201100019
  61. W.J. Liu, H. Jiang, H.Q. Yu, Chem. Rev., 115, 12251 (2015). https://doi.org/10.1021/acs.chemrev.5b00195
  62. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev., 41, 797 (2012) https://doi.org/10.1039/C1CS15060J
  63. S. Zhao, C.Y. Wang, M.M. Chen, J. Wang, Z.Q. Shi, J. Phys. Chem. Solids, 70, 1256 (2009). https://doi.org/10.1016/j.jpcs.2009.07.004
  64. X. Li, W. Xing, S. Zhuo, J. Zhou, F. Li, S.Z. Qiao, G.Q. Lu, Bioresour. Technol., 102, 1118 (2011). https://doi.org/10.1016/j.biortech.2010.08.110
  65. J. Yang, Y. Liu, X. Chen, Z. Hu, G. Zhao, Acta Phys.-Chim. Sin., 24, 13 (2008). https://doi.org/10.1016/S1872-1508(08)60002-9
  66. T.E. Rufford, D. Hulicova-Jurcakova, K. Khosla, Z. Zhu, G.Q. Lu, J. Power Sources, 195, 912 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.048
  67. Rohit Misra. Recycled waste paper-an inexpensive carbon material for supercapacitor applications, Masters thesis. Chitrakoot (M.P.): Mahatma Gandhi Chitrakoot Gramodaya Vishwavidyalaya; 2006.
  68. T.E. Rufford, D. Hulicova-Jurcakova, E. Fiset, Z. Zhu, G.Q. Lu, Electrochem. Commun., 11, 974 (2009). https://doi.org/10.1016/j.elecom.2009.02.038
  69. T.E. Rufford, D. Hulicova-Jurcakova, Z. Zhu, G.Q. Lu, Electrochem. Commun., 10, 1594 (2008). https://doi.org/10.1016/j.elecom.2008.08.022
  70. Z. Li, L. Zhangiioi, B.S. Amirkhiz, X. Tan, Z. Xu, H. Wang, B.C. Olsen, C.M.B. Holt, D. Mitlin, Adv. Energy Mater., 2, 431 (2012). https://doi.org/10.1002/aenm.201100548
  71. K. Jurewicz, K. Babel, Energy Fuels, 24, 3429 (2010). https://doi.org/10.1021/ef901554j
  72. M.A. Hannan, M.S.H. Lipu, A. Hussain, A. Mohamed, Renew. Sust. Energ. Rev., 78, 834 (2017). https://doi.org/10.1016/j.rser.2017.05.001
  73. P. Kalyani, A. Anitha, Int. J. Hydrogen Energy, 38, 4034 (2013). https://doi.org/10.1016/j.ijhydene.2013.01.048
  74. Z. Yu, Z. Feng, L.G. Dong, C.J. Sheng, Mater. Lett., 61, 5209 (2007). https://doi.org/10.1016/j.matlet.2007.04.032
  75. Y.J. Hwang, S.K. Jeong, K.S. Nahm, J.S. Shin, A.M. Stephan, J. Phys. Chem. Solids, 68, 182 (2007). https://doi.org/10.1016/j.jpcs.2006.10.007
  76. G.T. K. Fey, C.L. Chen, J. Power Sources, 97-98, 47 (2001). https://doi.org/10.1016/S0378-7753(01)00504-3
  77. G.T.K. Fey, Y.D. Cho, C.L. Chen, Y.Y. Lin, T.P. Kumar, S.H. Chan, Pure Appl. Chem. 82, 2157 (2010).
  78. A.M. Stephan, T.P. Kumar, R. Ramesh, S. Thomas, S.K. Jeong, K.S. Nahm, Mater. Sci. Eng. -A, 430, 132 (2006). https://doi.org/10.1016/j.msea.2006.05.131
  79. Y.J. Hwang, S.K. Jeong, J.S. Shin, K.S. Nahm, A.M. Stephan, J. Alloy. Comp., 448, 141 (2008). https://doi.org/10.1016/j.jallcom.2006.10.036
  80. G.T.K. Fey, Y.Y. Lin, K.P. Huang, Y.C. Lin, P.T. Kumar, Y.D. Cho, H.M. Kao, Adv. Mater. Res., 415-417, 1572 (2011). https://doi.org/10.4028/www.scientific.net/AMR.415-417.1572
  81. G.T.K. Fey, D.C. Lee, Y.Y. Lin, T.P. Kumar, Synth. Metals, 139, 71 (2003). https://doi.org/10.1016/S0379-6779(03)00082-1
  82. I. Isaev, G. Salitra, A. Soffer, Y.S. Cohen, D. Aurbach, J. Fischer, J. Power Sources, 119-121, 28 (2003). https://doi.org/10.1016/S0378-7753(03)00119-8
  83. A. Manthiram, Y. Fu, S.H. Chung, C. Zu, Y.S. Su, Chem. Rev., 114, 11751 (2014). https://doi.org/10.1021/cr500062v
  84. A. Kacprzak, R. Kobylecki, R. Wlodarczyk, Z. Bis, J. Power Sources, 255, 179 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.012
  85. A. Elleuch, A. Boussetta, J. Yu, K. Halouani, Y. Li, Int. J. Hydrog. Energy, 38, 16590 (2013). https://doi.org/10.1016/j.ijhydene.2013.08.090
  86. A. Elleuch, A. Boussetta, K. Halouani, Y. Li, Int. J. Hydrog. Energy, 38, 16605 (2013). https://doi.org/10.1016/j.ijhydene.2013.07.061
  87. T. Huggins, H. Wang, J. Kearns, P. Jenkins, Z.J. Ren, Bioresour. Technol., 157, 114 (2014). https://doi.org/10.1016/j.biortech.2014.01.058
  88. Y. Yuan, T. Yuan, D. Wang, J. Tang, S. Zhou, Bioresour. Technol., 144, 115 (2013). https://doi.org/10.1016/j.biortech.2013.06.075
  89. A.E. Creamer, B. Gao, M. Zhang, Chem. Eng. J. 249, 174 (2014). https://doi.org/10.1016/j.cej.2014.03.105
  90. A.E. Creamer, B. Gao, S. Wang, Chem. Eng. J. 283, 826 (2016). https://doi.org/10.1016/j.cej.2015.08.037
  91. S.A. Jafari, A. Jamali, A. Hosseini, Korean J. Chem. Eng., 32, 2053 (2015). https://doi.org/10.1007/s11814-015-0013-2
  92. A. Talebian, A.R. Keshtkar, M.A. Moosavian, Korean J. Chem. Eng., 33, 2205 (2016). https://doi.org/10.1007/s11814-016-0061-2
  93. A. Gupta, C. Balomajumder, Korean J. Chem. Eng., 33, 559 (2016). https://doi.org/10.1007/s11814-015-0137-4
  94. H. Haroon, T. Ashfaq, S.M.H. Gardazi, T.A. Sherazi, M. Ali, N. Rashid, M. Bilal, Korean J. Chem. Eng., 33, 2898 (2016). https://doi.org/10.1007/s11814-016-0160-0
  95. B. Kumar, U. Kumar, Korean J. Chem. Eng., 32, 1655 (2015). https://doi.org/10.1007/s11814-014-0351-5
  96. J. Zhu, J. Yu, J. Chen, J. Zhang, J. Tang, Y. Xu, Y. Zhang, R. Chi, Korean J. Chem. Eng. 34, 1721 (2017). https://doi.org/10.1007/s11814-017-0061-x
  97. M. Ahmadi, E. Kouhgardi, B. Ramavandi, Korean J. Chem. Eng., 33, 2589 (2016). https://doi.org/10.1007/s11814-016-0135-1
  98. H. Zhang, H. Shi, J. Chen, K. Zhao, L. Wang, Y. Hao, Korean J. Chem. Eng., 33, 3134 (2016). https://doi.org/10.1007/s11814-016-0182-7
  99. Z. Zhang, X. Feng, X.X. Yue, F.Q. An, W.X. Zhou, J.F. Gao, T.P. Hu, C.C. Wei, Korean J. Chem. Eng., 32, 1564 (2015). https://doi.org/10.1007/s11814-014-0372-0
  100. X. Jiang, D. Shen, Korean J. Chem. Eng., 34, 2619 (2017). https://doi.org/10.1007/s11814-017-0162-6
  101. G. Li, W. Zhu, L. Zhu, X. Chai, Korean J. Chem. Eng., 33, 2215 (2016). https://doi.org/10.1007/s11814-016-0067-9
  102. S.H. Park, H.J. Cho, C. Ryu, Y.K. Park, J. J. Ind. Eng. Chem. 36, 314 (2016). https://doi.org/10.1016/j.jiec.2016.02.021
  103. Z. Zhou, Y. Liu, S. Liu, H. Liu, G. Zeng, X. Tan, C. Yang, Y. Ding, Z. Yan, X. Cai, Chem. Eng. J., 314, 223 (2017). https://doi.org/10.1016/j.cej.2016.12.113
  104. M. Ruthiraan, N.M. Mubarak, R.K. Thines, E.C. Abdullah, J.N. Sahu, N.S. Jayakumar, P. Ganesan, Korean J. Chem. Eng., 32, 446 (2015). https://doi.org/10.1007/s11814-014-0260-7
  105. Y. Sun, J.P. Zhang, F. Guo, L. Zhang, Korean J. Chem. Eng., 33, 2703 (2016). https://doi.org/10.1007/s11814-016-0152-0
  106. H.N. Tran, S.J. You, H.P. Chao, Korean J. Chem. Eng., 34, 1708 (2017). https://doi.org/10.1007/s11814-017-0056-7
  107. J.H. Ko, Y.H. Kwak, K.S. Yoo, J.K. Jeon, S.H. Park, Y.K. Park, J. Mater. Cycles Waste Manag., 13, 173 (2011). https://doi.org/10.1007/s10163-011-0015-z
  108. J.Y. Lee, S.H. Park, J.K. Jeon, K.S. Yoo, S.S. Kim, Y.K. Park, Korean J. Chem. Eng. 28, 1556 (2011). https://doi.org/10.1007/s11814-011-0007-7
  109. B.S. Kang, Y. Hong, H. Lee, Y.M. Kim, S.C. Kim, J.K. Jeon, S.C. Jung, Y.K. Park, J. Nanosci. Nanotechnol., 18, 1492 (2018). https://doi.org/10.1166/jnn.2018.14905
  110. S.S.A. Syed-Hassan, M.S.M. Zaini, Korean J. Chem. Eng., 33, 2502 (2016). https://doi.org/10.1007/s11814-016-0072-z