Behavior of contaminated liquid CO₂ droplets in the deep sea

Thao Nguyen*, Jin Hwan Hwang**

м . .

Abstract

Carbon Capture and Storage with ocean sequestration is being considered as one of the most effective option for reducing the CO_2 net flux from atmosphere nowadays. But it is still possible for CO_2 substance to leaks out from transport pipeline or from the under seabed storage sites and causing damage to ambient environment. The behavior of liquid CO_2 under droplet shape would be strongly affected by the presence of other contaminants such as SO_2 comes from processing processes. This presentation shows the behavior in the sea water of pure liquid CO_2 droplets as well as droplets that consist of SO_2 substances. The study uses computational fluid dynamic models in comparison with experimental data from other previous researchers. Droplet of liquid CO_2 is assumed to be released at several depths in deep ocean, with other environmental conditions are set up respectively. All calculations are conducted with many different ratio of contaminant SO_2 to provide fundamental data of those particles rising characteristics. The effect of contaminants on the behavior of CO_2 droplets would be clearly shown through the results of particle deformation, terminal rising velocity happen due to buoyancy force driving from the difference in density of CO_2 substance and ocean water around.

Keywords: CO₂, SO₂, Droplet, Carbon Capture and Storage

Acknowledgement

This research was a part of the project titled 'Development of integrated estuarine management system', funded by the Ministry of Oceans and Fisheries, Korea.

^{*} Member · Graduate student, Dept. of Civil and Envi. Eng., Dongguk University · E-mail : tequeiro_ht2n@yahoo.com

^{**} Professor, Dept. of Civil and Environmental Engineering, Seoul National University