DOI QR코드

DOI QR Code

Recent Development in Metal Oxides for Carbon Dioxide Capture and Storage

금속 산화물을 기반으로 한 이산화탄소 포집과 저장에 대한 최근 기술

  • Oh, Hyunyoung (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University) ;
  • Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
  • 오현영 (연세대학교 언더우드국제대학 융합과학공학부 에너지환경과학공학) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드국제대학 융합과학공학부 에너지환경과학공학)
  • Received : 2020.04.13
  • Accepted : 2020.04.26
  • Published : 2020.04.30

Abstract

CO2 capture and storage (CCS) is one of the promising technologies that can mitigate ever-growing emission of anthropogenic carbon dioxide and resultant climate change. Among them, chemical looping combustion (CLC) and calcium looping (CaL) are getting increasing attention recently as the prospective alternatives to the existing amine scrubbing. Both methods use metal oxides in the process and consist of cyclic reactions. Yet, due to their cyclic nature, they both need to resolve sintering-induced cyclic stability deterioration. Moreover, the structure of the metal oxides needs to be optimized to enhance the overall performance of CO2 capture and storage. Deposition of thin film coating on the metal oxide is another way to get rid of wear and tear during the sintering process. Chemical vapor deposition or atomic layer deposition are the well-known, established methods to form thin film membranes, which will be discussed in this review. Various effective recent developments on structural modification of metal oxide and incorporation of stabilizers for cyclic stability are also discussed.

이산화탄소 포집 및 저장기술(CCS)은 인류발생적 요인에 의한 이산화탄소 배출 증가와 그로 인한 기후변화를 완화시킬 수 있는 기술 중 하나이다. 그 중, 매체 순환식 연소(chemical looping combustion, CLC)와 칼슘루핑(calcium looping) 기술은 현재 아민 스크러빙(amine scrubbing)을 대체할 수 있는 유망한 기술로 주목받고 있다. 두 방법 모두 금속 산화물을 이용한 연속적인 순환 사이클 반응에 의한 것이다. 전체적인 이산화탄소 포집 및 저장 성능의 향상을 위해서는 사이클을 거듭하며 발생하는 소결(sintering)로 인한 안정성 저하 문제를 해결하고 금속 산화물의 구조 또한 최적화해야 한다. 금속 산화물 표면에 얇은 박막을 형성하는 것은 소결로 인한 손상을 막을 수 있는 방법이다. 이러한 박막 제조 기술로 잘 알려진 기술에는 화학기상증착법(chemical vapor deposition)과 원자층증착기술(atomic layer deposition)이 있다. 본 총설에서는 CVD, ALD 기술을 비롯하여 효과적인 반응 안정성 향상을 위한 안정제 첨가 방법, 금속 산화물 구조 개선에 대한 다양한 최근 기술들을 다루었다.

Keywords

References

  1. M. E. Boot-Handford, J. C. Abanades, E. J. Anthony, M. J. Blunt, S. Brandani, N. Mac Dowell, J. R. Fernandez, M.-C. Ferrari, R. Gross, J. P. Hallett, R. S. Haszeldine, P. Heptonstall, A. Lyngfelt, Z. Makuch, E. Mangano, R. T. J. Porter, M. Pourkashanian, G. T. Rochelle, N. Shah, J. G. Yao, and P. S. Fennell, "Carbon capture and storage update", Energy Environ. Sci., 7, 130 (2014). https://doi.org/10.1039/C3EE42350F
  2. J. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, Q. Wang, D. O'Hare, and Z. Zhong, "Recent advances in solid sorbents for $CO_2$ capture and new development trends", Energy Environ. Sci., 7, 3478 (2014). https://doi.org/10.1039/C4EE01647E
  3. A. B. Rao and E. S. Rubin, "A technical, economic, and environmental assessment of amine-based $CO_2$ capture technology for power plant greenhouse gas control", Environ. Sci. Technol., 36, 4467 (2002). https://doi.org/10.1021/es0158861
  4. B. P. Spigarelli and S. K. Kawatra, "Opportunities and challenges in carbon dioxide capture", J. $CO_2$ Util., 1, 69 (2013).
  5. S. J. Moon, H. J. Min, N. U. Kim, and J. H. Kim, "Fabrication of polymeric blend membranes using PBEM-POEM comb copolymer and poly(ethylene glycol) for $CO_2$ capture", Membr. J., 29, 223 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.4.223
  6. C. W. S. Chi, J. H. Lee, M. S. Park, and J. H. Kim, "Recent research trends of mixed matrix membranes for $CO_2$ separation Won Seok", Membr. J., 25, 373 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.5.373
  7. M. Jung and H. Oh, "$CO_2/CH_4$ separation in metal-organic frameworks: Flexibility or open metal sites?", Membr. J., 28, 136 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.2.136
  8. J. H. Lee and R. Patel, "Poly(ether block amide) (PEBA) based membranes for carbon dioxide separation", Membr. J., 29, 1 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.1.1
  9. H. Sun, C. Wu, B. Shen, X. Zhang, Y. Zhang, and J. Huang, "Progress in the development and application of CaO-based adsorbents for $CO_2$ capture - a review", Materials Today Sustainability, 1-2, 1 (2018). https://doi.org/10.1016/j.mtsust.2018.08.001
  10. S. A. Salaudeen, B. Acharya, and A. Dutta, "CaO-based $CO_2$ sorbents: A review on screening, enhancement, cyclic stability, regeneration and kinetics modelling", J. $CO_2$ Util., 23, 179 (2018).
  11. C. Ortiz, J. M. Valverde, R. Chacartegui, L. A. Perez-Maqueda, and P. Gimenez, "The calcium-looping ($CaCO_3/CaO$) process for thermochemical energy storage in concentrating solar power plants", Renew. Sust. Energ. Rev., 113, 109252 (2019). https://doi.org/10.1016/j.rser.2019.109252
  12. B. J. O'Neill, D. H. K. Jackson, J. Lee, C. Canlas, P. C. Stair, C. L. Marshall, J. W. Elam, T. F. Kuech, J. A. Dumesic, and G. W. Huber, "Catalyst design with atomic layer deposition", ACS Catal., 5, 1804 (2015). https://doi.org/10.1021/cs501862h
  13. S. M. Kim, W. C. Liao, A. M. Kierzkowska, T. Margossian, D. Hosseini, S. Yoon, M. Broda, C. Coperet, and C. R. Muller, "In situ XRD and dynamic nuclear polarization surface enhanced NMR spectroscopy unravel the deactivation mechanism of CaO-based, $Ca_3Al_2O_6$-stabilized $CO_2$ sorbents", Chem. Mater., 30, 1344 (2018). https://doi.org/10.1021/acs.chemmater.7b05034
  14. S. Brunauer, P. H. Emmett, and E. Teller, "Adsorption of gases in multimolecular layers", J. Am. Chem. Soc., 60, 309 (1938). https://doi.org/10.1021/ja01269a023
  15. J. DeBoer and C. Zwicker, "The polarization due to adsorption isotherms", Z. Phys. Chem., 3, 407 (1929).
  16. K. Huang, F. Liu, J. P. Fan, and S. Dai, "Open and hierarchical carbon framework with ultralarge pore volume for efficient capture of carbon dioxide", ACS Appl. Mater. Interfaces, 10, 36961 (2018). https://doi.org/10.1021/acsami.8b12182
  17. A. Dal Pozzo, A. Armutlulu, M. Rekhtina, C. R. Muller, and V. Cozzani, "$CO_2$uptake potential of Ca-based air pollution control residues over repeated carbonation-calcination cycles", Energy & Fuels, 32, 5386 (2018). https://doi.org/10.1021/acs.energyfuels.8b00391
  18. J. Tong, X. Lei, J. Fang, M. Han, and K. Huang, "Remarkable $O_2$ permeation through a mixed conducting carbon capture membrane functionalized by atomic layer deposition", J. Mater. Chem. A, 4, 1828 (2016). https://doi.org/10.1039/C5TA10105K
  19. X. Liang, X. Lu, M. Yu, A. S. Cavanagh, D. L. Gin, and A. W. Weimer, "Modification of nanoporous supported lyotropic liquid crystal polymer membranes by atomic layer deposition", J. Membr. Sci., 349, 1 (2010). https://doi.org/10.1016/j.memsci.2009.11.067
  20. J. Chen, L. Duan, and Z. Sun, "Accurate control of cage-like CaO hollow microspheres for enhanced $CO_2$ capture in calcium looping via a template-assisted synthesis approach", Environ. Sci. Technol., 53, 2249 (2019). https://doi.org/10.1021/acs.est.8b06138
  21. J. Liao, B. Jin, Y. Zhao, and Z. Liang, "Highly efficient and durable metal-organic framework material derived Ca-based solid sorbents for $CO_2$ capture", Chem. Eng. J., 1028 (2019).
  22. C. Chi, Y. Li, W. Zhang, and Z. Wang, "Synthesis of a hollow microtubular Ca/Al sorbent with high $CO_2$ uptake by hard templating", Appl. Energy, 113382 (2019).
  23. S. Li, T. Jiang, Z. Xu, Y. Zhao, X. Ma, and S. Wang, "The Mn-promoted double-shelled $CaCO_3$ hollow microspheres as high efficient $CO_2$ adsorbents", Chem. Eng. J., 53 (2019). https://doi.org/10.1016/j.cej.2018.06.182
  24. M. A. Naeem, A. Armutlulu, Q. Imtiaz, F. Donat, R. Schaublin, A. Kierzkowska, and C. R. Muller, "Optimization of the structural characteristics of CaO and its effective stabilization yield high-capacity $CO_2$ sorbents", Nat. Commun., 9, 1 (2018). https://doi.org/10.1038/s41467-017-02088-w
  25. A. Dal Pozzo, A. Armutlulu, M. Rekhtina, P. M. Abdala, and C. R. Muller, "$CO_2$ uptake and cyclic stability of MgO-based $CO_2$ sorbents promoted with alkali metal nitrates and their eutectic mixtures", ACS Appl. Ener. Mat., 2, 1295 (2019). https://doi.org/10.1021/acsaem.8b01852
  26. H. Cui, Q. Zhang, Y. Hu, C. Peng, X. Fang, Z. Cheng, V. V. Galvita, and Z. Zhou, "Ultrafast and stable $CO_2$ capture using alkali metal salt-promoted $MgO-CaCO_3$ sorbents", ACS Appl. Mater. Interfaces, 10, 20611 (2018). https://doi.org/10.1021/acsami.8b05829
  27. S. M. Kim, P. M. Abdala, M. Broda, D. Hosseini, C. Coperet, and C. Muller, "Integrated $CO_2$ capture and conversion as an efficient process for fuels from greenhouse gases", ACS Catal., 8, 2815 (2018). https://doi.org/10.1021/acscatal.7b03063
  28. A. Armutlulu, M. A. Naeem, H. J. Liu, S. M. Kim, A. Kierzkowska, A. Fedorov, and C. R. Muller, "Multishelled CaO microspheres stabilized by atomic layer deposition of $Al_2O_3$ for enhanced $CO_2$ capture performance", Adv. Mater., 29, 1702896 (2017). https://doi.org/10.1002/adma.201702896
  29. R. Han, J. Gao, S. Wei, Y. Su, and Y. Qin, "Development of highly effective $CaO@Al_2O_3$ with hierarchical architecture $CO_2$ sorbents: Via a scalable limited-space chemical vapor deposition technique", J. Mater. Chem. A, 6, 3462 (2018). https://doi.org/10.1039/C7TA09960F
  30. N. S. Yuzbasi, A. Armutlulu, P. M. Abdala, and C. R. Muller, "Atomic layer deposition of a film of $Al_2O_3$ on electrodeposited copper foams to yield highly effective oxygen carriers for chemical looping combustion-based $CO_2$ capture", ACS Appl. Mater. Interfaces, 10, 37994 (2018). https://doi.org/10.1021/acsami.8b11653