Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.2.97

Recent Development in Metal Oxides for Carbon Dioxide Capture and Storage  

Oh, Hyunyoung (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
Publication Information
Membrane Journal / v.30, no.2, 2020 , pp. 97-110 More about this Journal
Abstract
CO2 capture and storage (CCS) is one of the promising technologies that can mitigate ever-growing emission of anthropogenic carbon dioxide and resultant climate change. Among them, chemical looping combustion (CLC) and calcium looping (CaL) are getting increasing attention recently as the prospective alternatives to the existing amine scrubbing. Both methods use metal oxides in the process and consist of cyclic reactions. Yet, due to their cyclic nature, they both need to resolve sintering-induced cyclic stability deterioration. Moreover, the structure of the metal oxides needs to be optimized to enhance the overall performance of CO2 capture and storage. Deposition of thin film coating on the metal oxide is another way to get rid of wear and tear during the sintering process. Chemical vapor deposition or atomic layer deposition are the well-known, established methods to form thin film membranes, which will be discussed in this review. Various effective recent developments on structural modification of metal oxide and incorporation of stabilizers for cyclic stability are also discussed.
Keywords
carbon capture and storage; atomic layer deposition; $CO_2$; thin film membranes;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. E. Boot-Handford, J. C. Abanades, E. J. Anthony, M. J. Blunt, S. Brandani, N. Mac Dowell, J. R. Fernandez, M.-C. Ferrari, R. Gross, J. P. Hallett, R. S. Haszeldine, P. Heptonstall, A. Lyngfelt, Z. Makuch, E. Mangano, R. T. J. Porter, M. Pourkashanian, G. T. Rochelle, N. Shah, J. G. Yao, and P. S. Fennell, "Carbon capture and storage update", Energy Environ. Sci., 7, 130 (2014).   DOI
2 J. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, Q. Wang, D. O'Hare, and Z. Zhong, "Recent advances in solid sorbents for $CO_2$ capture and new development trends", Energy Environ. Sci., 7, 3478 (2014).   DOI
3 A. B. Rao and E. S. Rubin, "A technical, economic, and environmental assessment of amine-based $CO_2$ capture technology for power plant greenhouse gas control", Environ. Sci. Technol., 36, 4467 (2002).   DOI
4 B. P. Spigarelli and S. K. Kawatra, "Opportunities and challenges in carbon dioxide capture", J. $CO_2$ Util., 1, 69 (2013).
5 S. J. Moon, H. J. Min, N. U. Kim, and J. H. Kim, "Fabrication of polymeric blend membranes using PBEM-POEM comb copolymer and poly(ethylene glycol) for $CO_2$ capture", Membr. J., 29, 223 (2019).   DOI
6 C. W. S. Chi, J. H. Lee, M. S. Park, and J. H. Kim, "Recent research trends of mixed matrix membranes for $CO_2$ separation Won Seok", Membr. J., 25, 373 (2015).   DOI
7 A. Dal Pozzo, A. Armutlulu, M. Rekhtina, P. M. Abdala, and C. R. Muller, "$CO_2$ uptake and cyclic stability of MgO-based $CO_2$ sorbents promoted with alkali metal nitrates and their eutectic mixtures", ACS Appl. Ener. Mat., 2, 1295 (2019).   DOI
8 H. Cui, Q. Zhang, Y. Hu, C. Peng, X. Fang, Z. Cheng, V. V. Galvita, and Z. Zhou, "Ultrafast and stable $CO_2$ capture using alkali metal salt-promoted $MgO-CaCO_3$ sorbents", ACS Appl. Mater. Interfaces, 10, 20611 (2018).   DOI
9 S. M. Kim, P. M. Abdala, M. Broda, D. Hosseini, C. Coperet, and C. Muller, "Integrated $CO_2$ capture and conversion as an efficient process for fuels from greenhouse gases", ACS Catal., 8, 2815 (2018).   DOI
10 A. Armutlulu, M. A. Naeem, H. J. Liu, S. M. Kim, A. Kierzkowska, A. Fedorov, and C. R. Muller, "Multishelled CaO microspheres stabilized by atomic layer deposition of $Al_2O_3$ for enhanced $CO_2$ capture performance", Adv. Mater., 29, 1702896 (2017).   DOI
11 S. A. Salaudeen, B. Acharya, and A. Dutta, "CaO-based $CO_2$ sorbents: A review on screening, enhancement, cyclic stability, regeneration and kinetics modelling", J. $CO_2$ Util., 23, 179 (2018).
12 M. Jung and H. Oh, "$CO_2/CH_4$ separation in metal-organic frameworks: Flexibility or open metal sites?", Membr. J., 28, 136 (2018).   DOI
13 J. H. Lee and R. Patel, "Poly(ether block amide) (PEBA) based membranes for carbon dioxide separation", Membr. J., 29, 1 (2019).   DOI
14 H. Sun, C. Wu, B. Shen, X. Zhang, Y. Zhang, and J. Huang, "Progress in the development and application of CaO-based adsorbents for $CO_2$ capture - a review", Materials Today Sustainability, 1-2, 1 (2018).   DOI
15 C. Ortiz, J. M. Valverde, R. Chacartegui, L. A. Perez-Maqueda, and P. Gimenez, "The calcium-looping ($CaCO_3/CaO$) process for thermochemical energy storage in concentrating solar power plants", Renew. Sust. Energ. Rev., 113, 109252 (2019).   DOI
16 B. J. O'Neill, D. H. K. Jackson, J. Lee, C. Canlas, P. C. Stair, C. L. Marshall, J. W. Elam, T. F. Kuech, J. A. Dumesic, and G. W. Huber, "Catalyst design with atomic layer deposition", ACS Catal., 5, 1804 (2015).   DOI
17 S. M. Kim, W. C. Liao, A. M. Kierzkowska, T. Margossian, D. Hosseini, S. Yoon, M. Broda, C. Coperet, and C. R. Muller, "In situ XRD and dynamic nuclear polarization surface enhanced NMR spectroscopy unravel the deactivation mechanism of CaO-based, $Ca_3Al_2O_6$-stabilized $CO_2$ sorbents", Chem. Mater., 30, 1344 (2018).   DOI
18 S. Brunauer, P. H. Emmett, and E. Teller, "Adsorption of gases in multimolecular layers", J. Am. Chem. Soc., 60, 309 (1938).   DOI
19 N. S. Yuzbasi, A. Armutlulu, P. M. Abdala, and C. R. Muller, "Atomic layer deposition of a film of $Al_2O_3$ on electrodeposited copper foams to yield highly effective oxygen carriers for chemical looping combustion-based $CO_2$ capture", ACS Appl. Mater. Interfaces, 10, 37994 (2018).   DOI
20 R. Han, J. Gao, S. Wei, Y. Su, and Y. Qin, "Development of highly effective $CaO@Al_2O_3$ with hierarchical architecture $CO_2$ sorbents: Via a scalable limited-space chemical vapor deposition technique", J. Mater. Chem. A, 6, 3462 (2018).   DOI
21 J. Tong, X. Lei, J. Fang, M. Han, and K. Huang, "Remarkable $O_2$ permeation through a mixed conducting carbon capture membrane functionalized by atomic layer deposition", J. Mater. Chem. A, 4, 1828 (2016).   DOI
22 J. DeBoer and C. Zwicker, "The polarization due to adsorption isotherms", Z. Phys. Chem., 3, 407 (1929).
23 K. Huang, F. Liu, J. P. Fan, and S. Dai, "Open and hierarchical carbon framework with ultralarge pore volume for efficient capture of carbon dioxide", ACS Appl. Mater. Interfaces, 10, 36961 (2018).   DOI
24 A. Dal Pozzo, A. Armutlulu, M. Rekhtina, C. R. Muller, and V. Cozzani, "$CO_2$uptake potential of Ca-based air pollution control residues over repeated carbonation-calcination cycles", Energy & Fuels, 32, 5386 (2018).   DOI
25 X. Liang, X. Lu, M. Yu, A. S. Cavanagh, D. L. Gin, and A. W. Weimer, "Modification of nanoporous supported lyotropic liquid crystal polymer membranes by atomic layer deposition", J. Membr. Sci., 349, 1 (2010).   DOI
26 J. Chen, L. Duan, and Z. Sun, "Accurate control of cage-like CaO hollow microspheres for enhanced $CO_2$ capture in calcium looping via a template-assisted synthesis approach", Environ. Sci. Technol., 53, 2249 (2019).   DOI
27 J. Liao, B. Jin, Y. Zhao, and Z. Liang, "Highly efficient and durable metal-organic framework material derived Ca-based solid sorbents for $CO_2$ capture", Chem. Eng. J., 1028 (2019).
28 C. Chi, Y. Li, W. Zhang, and Z. Wang, "Synthesis of a hollow microtubular Ca/Al sorbent with high $CO_2$ uptake by hard templating", Appl. Energy, 113382 (2019).
29 M. A. Naeem, A. Armutlulu, Q. Imtiaz, F. Donat, R. Schaublin, A. Kierzkowska, and C. R. Muller, "Optimization of the structural characteristics of CaO and its effective stabilization yield high-capacity $CO_2$ sorbents", Nat. Commun., 9, 1 (2018).   DOI
30 S. Li, T. Jiang, Z. Xu, Y. Zhao, X. Ma, and S. Wang, "The Mn-promoted double-shelled $CaCO_3$ hollow microspheres as high efficient $CO_2$ adsorbents", Chem. Eng. J., 53 (2019).   DOI