• Title/Summary/Keyword: canker disease

Search Result 90, Processing Time 0.026 seconds

First Report and Characterization of Pestalotiopsis ellipsospora Causing Canker on Acanthopanax divaricatus

  • Yun, Yeo Hong;Ahn, Geum Ran;Kim, Seong Hwan
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.366-370
    • /
    • 2015
  • Acanthopanax divaricatus, a member of the Araliaceae family, has been used as an invigorant in traditional Korean medicine. During disease monitoring, a stem with small, irregular, brown lesions was sampled at a farm in Cheonan in 2011. The symptoms seen were sunken cankers and reddish-brown needles on the infected twig. The isolated fungal colonies were whitish, having crenated edges and aerial mycelium on the surface, and with black gregarious fruiting bodies. The reverse plate was creamy white. Conidia were $17{\sim}22{\times}3.5{\sim}4.2{\mu}m$, fusiform, 4-septate, and straight to slightly curved. The nucleotide sequence of the partial translation elongation factor 1 alpha gene of the fungal isolate, shares 99% sequence identity with that of known Pestalotiopsis ellipsospora. Based on the results of the morphological and molecular analyses, the fungal isolate was identified as P. ellipsospora. In Korea, this is the first report of canker on A. divaricatus.

Occurrence of Stem Canker on Rape Caused by Leptosphaeria biglobosa in Korea

  • Hong, Sung-Kee;Kim, Wan-Gyu;Shin, Dong-Beom;Choi, Hyo-Won;Lee, Young-Kee;Lee, Sang-Yeob
    • The Plant Pathology Journal
    • /
    • v.25 no.3
    • /
    • pp.294-298
    • /
    • 2009
  • Stem canker symptoms were observed in a rape field in Muan, Korea during a disease survey in May 2006. A total of 15 isolates of Phoma sp. were obtained from the infected stems of the plant. All isolates were identified as Leptosphaeria biglobosa based on their morphological and cultural characteristics. The Korean isolates of L. biglobosa were assigned to 'brassicae' among six subclades of L. biglobosa complex based on the entire ITS sequences of rDNA. Pathogenicity of the fungal isolates was confirmed on leaves and stems of rape by artificial inoculation. This is the first report that Leptosphaeria biglobosa causes stem canker of rape in Korea.

Diversity of PthA Gene of Xanthomonas Strains Causing Citrus Bacterial Canker and its Relationship with Virulence

  • Lee, Seung-Don;Lee, Jung-Hee;Lee, Dong-Hee;Lee, Yong-Hoon
    • The Plant Pathology Journal
    • /
    • v.24 no.3
    • /
    • pp.357-360
    • /
    • 2008
  • Several pathotypes have been recognized in citrus bacterial canker, which causing serious damage in citrus cultivation area. To control the disease, it is important to understand the pathological diversity and reason of difference in virulence of the causal pathogen. We analyzed 124 strains of Xanthomonas causing citrus bacterial canker by southern hybridization with an internal 3.4-kb BamHI fragment from pthA gene. Assuming each band represented an intact gene, each strain of Xanthomonas was estimated to have approximately 1 to 4 copies of pthA gene. X. a. pv. citri A type had more than 3 copies of pthA gene, and the number of pthA gene in X. a. pv. citri $A^*,\;A^w$, and X. a. pv. aurantifolii B, C were different from 1 to 3 according to the strains. When the pthA gene profile was classified into 13 groups according to the number and size of hybridization bands, most of the A types belong to the 3A group, and 4A and 4B type was dominant when they had 4 bands. However, there was no general pattern of difference between the virulence and pthA gene group in this test.

Bacterial Canker of Japanese Apricot (Prunus mume) Caused by Pseudomonas syringae pv. morsprunorum (Pseudomonas syringae pv. morsprunorum에 의한 매실의 세균성궤양성)

  • Kim Doo Young;Han Hyo Shim;Koh Young Jin;Jung Jae Sung
    • Research in Plant Disease
    • /
    • v.11 no.2
    • /
    • pp.135-139
    • /
    • 2005
  • Bacterial canker of Japanese apricot (Prunus mume Sieb. et Zucc.) was found in all orchards located at southern area of Korea. Typical symptoms were characterized by dark spots formed on fruits, brown lesions on leaves, and bacterial exudate oozed out of the cracked bark of diseased tree. Thirty-eight isolates from 16 different areas were identified on the basis of biochemical and physiological characteristics (LOPAT and GATTa test) and also on the basis of 165 rDNA and ITS sequences. Pathogenicity tests confirmed that bacterial canker of Japanese apricot in Korea is caused by Pseudomonas syringae pv. morsprunorum.

Isolation and Characterization of Bacteriophages Against Pseudomonas syringae pv. actinidiae Causing Bacterial Canker Disease in Kiwifruit

  • Yu, Ji-Gang;Lim, Jeong-A;Song, Yu-Rim;Heu, Sunggi;Kim, Gyoung Hee;Koh, Young Jin;Oh, Chang-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.385-393
    • /
    • 2016
  • Pseudomonas syringae pv. actinidiae causes bacterial canker disease in kiwifruit. Owing to the prohibition of agricultural antibiotic use in major kiwifruit-cultivating countries, alternative methods need to be developed to manage this disease. Bacteriophages are viruses that specifically infect target bacteria and have recently been reconsidered as potential biological control agents for bacterial pathogens owing to their specificity in terms of host range. In this study, we isolated bacteriophages against P. syringae pv. actinidiae from soils collected from kiwifruit orchards in Korea and selected seven bacteriophages for further characterization based on restriction enzyme digestion patterns of genomic DNA. Among the studied bacteriophages, two belong to the Myoviridae family and three belong to the Podoviridae family, based on morphology observed by transmission electron microscopy. The host range of the selected bacteriophages was confirmed using 18 strains of P. syringae pv. actinidiae, including the Psa2 and Psa3 groups, and some were also effective against other P. syringae pathovars. Lytic activity of the selected bacteriophages was sustained in vitro until 80 h, and their activity remained stable up to 50℃, at pH 11, and under UV-B light. These results indicate that the isolated bacteriophages are specific to P. syringae species and are resistant to various environmental factors, implying their potential use in control of bacterial canker disease in kiwifruits.

Studies on the Canker of Apple Tree Caused by Valsa mali $M_{IYABE}$ et $Y_{AMADA}$ (I. Occurrence) (사과나무 부난성 병해(부난병, 동고병, 동부병)에 관한 연구 제1보 발생상황)

  • Kim Seung Chul;Won Chang Nam;Lee Eung Kwon;Son Jun Su;Han Eui Dong
    • Korean journal of applied entomology
    • /
    • v.9 no.2
    • /
    • pp.81-84
    • /
    • 1970
  • The occurence of apple canker in the three main apple growing areas including Yesan, Chungju and Taegu was investigated during the four years from 1967 to 1970. According to the survey, about 30 percent of apple plants was infected with canker organisms and more the disease occurred in older plants in comparison with younger ones. Jonathan was said to be highly susceptible among five varieties observed. Main trunks or main branches had more canker lesions than those of twigs or of side branches. The survey showed that application of higher nitrogenous fertilizer without boric acid predisposed to the disease together with sandy soil.

  • PDF

Detection of Xanthomonas axonopodis pv. citri on Satsuma Mandarin Orange Fruits Using Phage Technique in Korea

  • Myung, Inn-Shik;Hyun, Jae-Wook;Cho, Weon-Dae
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.314-317
    • /
    • 2006
  • A phage technique for detection of Xanthomonas axonopodis pv. citri, a causal bacterium of canker on Sastuma mandarin fruits was developed. Phage and ELISA techniques were compared for their sensitivity for detection of Xanthomonas axonopodis pv. citri on orange fruits. Both of techniques revealed a similar efficiency for the bacterial detection; the pathogenic bacteria were observed in pellet from the fruits with over one canker spot with below 2 mm in diameter. In field assays, the increase of phage population(120%) on surface of the fruits related to the disease development one month later indicated that the bacterial pathogens inhabit on the surface. The procedure will be effectively used for detection of only living bacterial pathogen on fruit surfaces of Satsuma mandarin and for the disease forecasting.

A Forecast Model for Estimating the Infection Risk of Bacterial Canker on Kiwifruit Leaves in Korea (참다래 잎에서의 궤양병 감염 위험도 모형)

  • Do, Ki Seok;Chung, Bong Nam;Joa, Jae Ho
    • Research in Plant Disease
    • /
    • v.22 no.3
    • /
    • pp.168-177
    • /
    • 2016
  • A forecast model for estimating the infection risk of bacterial canker caused by Pseudomonas syringae pv. actinidiae on kiwifruit leaves in Korea was developed using the generic infection model of Magarey et al. (2005). Two-way contingency table analysis was carried out to evaluate accuracy of forecast models including the model developed in this study for estimating the infection of bacterial canker on kiwifruit using the weather and disease data collected from three kiwifruit orchards at Seogwipo in 2015. All the tested models had more than 80% of probability of detection indicating that all the tested models could be effective to manage the disease. The model developed in this study showed the highest values in proportion of correct (51.1%), probability of detection (90.9%), and critical success index (47.6%). It indicated that the model developed in this study would be the best model for estimating the infection of bacterial wilt on kiwifruit leaves in Korea. The model developed in this study could be used for a part of decision support system for managing bacterial wilt on kiwifruit leaves and help growers to reduce the loss caused by the disease in Korea.

Diaporthe phaseolorum var. caulivora, a Causal Agent for Both Stem Canker and Seed Decay on Soybean

  • Sun, Su-li;Van, Kyu-Jung;Kim, Moon-Young;Min, Kyung-Hun;Lee, Yin-Won;Lee, Suk-Ha
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.55-59
    • /
    • 2012
  • Northern stem canker caused by $Diaporthe$ $phaseolorum$ var. $caulivora$ ($Dpc$) has become a serious disease in soybean. The objectives of this study were to survey the existence of $Dpc$ on soybean in Korea, and to examine the potential pathogenicity of $Dpc$ in seed decay. One such isolate, SSLP-4, isolated from a field-grown plant of the Korean soybean cultivar Danbaekkong, was identified as $Dpc$, based on its morphological and molecular characteristics by sequences of internal transcribed spacer (ITS), translation elongation factor (TEF) 1-${\alpha}$ and ${\beta}$-tubulin regions, as well as pathogenic analyses. Moreover, morphological and molecular analyses revealed that isolate SSLP-4 was nearly identical to $Dpc$ strains from the United States. Pathogenicity tests on hypocotyls of soybean seedlings and detached leaves resulted in typical symptoms of soybean northern stem canker and inoculation on plants at R5-R7 stage caused seed decay. All results suggest that the $Dpc$ strain SSLP-4 can cause both stem canker and seed decay on soybean. Thus, the SSLP-4 isolate has the potential to contribute greatly to understanding of host plant resistance mechanisms, both at vegetative and reproductive growth stages in soybean.

PCR Detection Method for Rapid Diagnosis of Bacterial Canker Caused by Clavibacter michiganensis on Tomato (토마토 궤양병 신속 진단을 위한 Clavibacter michiganensis의 PCR 검출법)

  • Park, Mi-Jeong;Back, Chang-Gi;Park, Jong-Han
    • Research in Plant Disease
    • /
    • v.24 no.4
    • /
    • pp.342-347
    • /
    • 2018
  • Bacterial canker caused by Clavibacter michiganensis is considered to be one of the most serious diseases, leading to economic damage to tomato worldwide. Diagnosis of the bacterial canker on tomato is known to be difficult because the causal pathogen is slow-growing on artificial media as well as causes latent infection in tomato. In this study, as a less time-consuming method, a specific primer set was newly designed for rapid detection of C. michiganensis. The method presented here is so simple, easy, and fast that it can be useful and practical in direct detection of the bacterial canker pathogen from tomato plants.